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with Linked Open Data*

Chris  Bizer, Heiko Paulheim, University of Mannheim

*using examples from the domains
sex, drugs, and crime
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Data vs. Knowledge

1982
"We are drowning in data, 

but starving for knowledge”
John Naisbitt
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Data vs. Knowledge

• There is plenty of data

– Linked (Open) Data

– Government Data

– Sensor Data

– Social Networks

– …

• ...but data is not knowledge

• Knowledge is required for

– Assessments

– Actions
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Crime Data Live on the Web
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Crime Data Live on the Web

• data.seattle.gov:

– Live 911 call data

– Open for mashups

• Problem for the response team:

– Quick decisions required

• With severe effects...

– Minimal information

– Missing background knowledge

• ...but lots of potential sources
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There's a Fire!

• Knowledge:

– What sort of fire?

– Where?

• Assessment:

– Relevant from irrelevant

– Useful from useless

• Action:

– Maybe send someone

– Evacuate the neighborhood
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There's a Fire!

• How to tell the severity of an 
(incoming) emergency call?

• What is it sort of emergency 
(fire alarm, first aid call, shooting)?

• What is its context? E.g., for fires

– is it near a gas station or a pipeline?

– are there any schools/kindergartens nearby?

– is a hospital affected?

• What is its context? E.g., for shootings

– what are possible escape routes?

– are there any schools/kindergartens nearby?
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There's a Fire!

• For answering these questions, 
background knowledge is required

• E.g., Linked Geo Data

– Information about objects with coordinates

– Queries such as: give me all objects within 50m of (lat,long)

• As for incidents, relevance of Linked Geo Data 
needs to be assessed

– gas stations and pipelines may be relevant

– phone booths and statues probably are not

– based on user-defined rules

www.linkedgeodata.org
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Interlude: Linked Geo Data

• Wraps data from Open Street Maps as LOD

• Objects with coordinates
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There's a Fire!

• MICI: Live emergency calls from the city of Seattle

– provided as RSS

• Plus

– Example Rules

– Linked Geo Data
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There's a Fire!
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There's a Fire!

• MICI live: http://mici.tk.informatik.tu-darmstadt.de/

• Recap:

– Plenty of data (incoming 911 messages)

– Massive background information (Linked Geo Data)

– Filtering based on rules

– Helps: assessing information and acting properly

• Limitations:

– Data is already preprocessed (RSS from data.seattle.gov)

– Rules are created manually

http://mici.tk.informatik.tu-darmstadt.de/
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Building Knowledge-Intensive Applications
with Linked Open Data*

Chris Bizer, Heiko Paulheim, University of Mannheim

*using examples from the domains
sex, drugs, and crime
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Brief Interlude: Machine Learning Basics

• An essential ingredient to intelligent applications

– Dealing with new pieces of knowledge

– Handling unknown situations

– Adapting to users' needs

– Making predictions for the future

• Inductive vs. Deductive Reasoning:

– Deductive: rules + facts → facts

– Inductive: facts → rules
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Brief Interlude: Machine Learning Basics

• Example: learning a new concept, e.g., "Tree"

"tree" "tree" "tree"

"not a tree" "not a tree" "not a tree"
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Brief Interlude: Machine Learning Basics

• Example: learning a new concept, e.g., "Tree"

– we look at (positive and negative) 
examples

– ...and derive a model

• e.g., "Trees are big, green plants"

• Goal: Classification of new instances

"tree?"

Warning:
Models are only 

approximating examples!
Not guaranteed to be
correct or complete!
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Brief Interlude: Machine Learning Basics

• Typical tasks:

– Classification (binary or multi-label)

– Regression (i.e., predicting numerical values)

– Clustering (finding groups of objects)

– Frequent Pattern Mining

– ...

• Methods:

– Statistical approaches (Naive Bayes, Support Vector Machines, …)

– Symbolic approaches (Rules, Decision Trees, …)

– ...
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Linked Open Data for Machine Learning

• Example machine learning task: predicting book sales

ISBN City Sold

3-2347-3427-1 Darmstadt 124

3-43784-324-2 Mannheim 493

3-145-34587-0 Roßdorf 14

...

ISBN City Population ... Genre Publisher ... Sold

3-2347-3427-1 Darm-
stadt

144402 ... Crime Bloody 
Books

... 124

3-43784-324-2 Mann-
heim

291458 … Crime Guns Ltd. … 493

3-145-34587-0 Roß-
dorf

12019 ... Travel Up&Away ... 14

...

 → Crime novels sell better in larger cities

Data Mining Framework "FeGeLOD", RapidMiner Plugins
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The FeGeLOD Framework

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

Named Entity
Recognition

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

Feature
Generation

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

City_URI_dbpedia-owl:populationTotal

141471

City_URI_...

...

Feature
Selection

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

City_URI_dbpedia-owl:populationTotal

141471
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The FeGeLOD Framework

• Entity Recognition

– Simple approach: guess DBpedia URIs

– Hit rate >95% for cities and countries (by English name)

• Feature Generation

– Different Generators

• Data values (including heuristic numerical conversion)

• Classes (plus transitive closure)

• Quantifying Unqualified relations (boolean or numeric)

• Quantifying Qualified relations (boolean or numeric)

• Feature Selection

– Filter noise: >95% unknown, identical, or different nominals
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The FeGeLOD Prototype 
(now: RapidMiner Linked Open Data Extension)
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The FeGeLOD Prototype 
(now: RapidMiner Linked Open Data Extension)
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The FeGeLOD Prototype 
(now: RapidMiner Linked Open Data Extension)
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Back to Incidents

• So far, we were using preprocessed RSS data

– How can we detect incidents automatically?

• And handcrafted rules

– How can we acquire rules?

fire at #mannheim 
#universityomg two cars on

fire #A5 #accident

fire at train station
still burning

my heart 
is on fire!!!come on baby

light my fire

boss should fire
that stupid moron
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Detecting Incidents from Social Media

• Social media contains data on many incidents

– But keyword search is not enough

– Detecting small incidents is hard

– Manual inspection is too expensive (and slow)

• Machine learning could help

– Train a model to classify incident/non incident tweets

– Apply model for detecting incident related tweets

• Training data:

– Traffic accidents

– ~2,000 tweets containing relevant keywords (“car”, “crash”, etc.), 
hand labeled (50% related to traffic incidents)
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Detecting Incidents from Social Media

• Learning to classify tweets:

– Positive and negative examples

– Features:

• Stemming

• POS tagging

• Word n-grams

• …

• Accuracy ~90%

• But

– Accuracy drops to ~85% when applying the model to a different city
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Brief Interlude: Model Overfitting

• What happens here?

– Model is trained on a sample of labeled data

– Tries to identify the characteristics of that data

• Possible effect:

– Model is too close to training data
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Brief Interlude: Model Overfitting

• Extreme example

– Predict credit rating

• Possible (useful) model:

– (job status = employed) && (debts<5000) → rating=positive

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +
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Brief Interlude: Model Overfitting

• Extreme example

– Predict credit rating

• Possible overfit models:

– (34000<income<36000) || (income>39000) → rating=positive

– (name=John) || (name=Alice) → rating=positive

Name Net Income Job status Debts Rating

John 40000 employed 0 +

Mary 38000 employed 10000 -

Stephen 21000 self-employed 20000 -

Eric 2000 student 10000 -

Alice 35000 employed 4000 +
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Brief Interlude: Model Overfitting

• All three models perfectly describe the training data

– But only one is a useful generalization

• Two goals of machine learning (sometimes contradicting):

– Explain training data as good as possible

– Find a model that is as general as possible

• Strategies for preventing overfitting:

– Cross validation

– Model pruning

– Stopping criteria in model building

– Occam's Razor

– ...
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Detecting Incidents from Social Media

• Accuracy ~90%

• But

– Accuracy drops to ~85% when applying the model to a different city

– Model overfitting?

• Example set: 

– “Again crash on I90”

– “Accident on I90”

• Model:

– “I90” → indicates traffic accident

• Applying the model:

– “Two cars crashed on I51” → not related to traffic accident
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Using LOD for Preventing Overfitting

• Example set: 

– “Again crash on I90”

– “Accident on I90”

dbpedia:Interstate_90

dbpedia-owl:Road

rdf:type

dbpedia:Interstate_51
rdf:type

• Model:
– dbpedia-owl:Road → indicates traffic accident

• Applying the model:
– “Two cars crashed on I51” → indicates traffic accident

• Using DBpedia Spotlight + FeGeLOD
– Accuracy keeps up at 90%
– Overfitting is avoided
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Back to Incidents

• So far, we were using preprocessed RSS data

– How can we detect incidents automatically?

• And handcrafted rules

– How can we acquire rules?

• Recap: Inductive vs. Deductive Reasoning:

– Deductive: rules + facts → facts

– Inductive: facts → rules
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What's that Noise?

• A slightly different scenario:

– Noise measurements from cities

• Create predictions

– For the rest of the city

– For new infrastructure

• Note:

– No handcrafted rules

– But a fully automatic prediction

• Based on example
measurements
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What's that Noise?

• Additional data comes from

– Linked Geo Data

– Open Street Maps (Streets: types, lanes and speed limits)

– Deutscher Wetterdienst
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What's that Noise?

• Results:

– Machine trained model for noise

– ~80% accuracy in predicting the noise level (six classes)

• Mean absolute error only 0.077

• This allows to...

– generate a whole noise map from a small set of observations

– play “what if” with hypothetical changes

• e.g., how do speed limits affect noise levels?
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What's that Noise?

• From preprocessed RSS data

– To automatic detection (e.g., Twitter)

• From hand-crafted rules

– To automatically induced models
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Supporting Information Extraction

• Task: Event Extraction from Wikipedia

• Joint work with GESIS (Cologne)

http://www.vizgr.org/historical-events/timeline/
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Supporting Information Extraction

• Source Material:
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Supporting Information Extraction

• Event data is automatically extracted

– Date

– Textual Description

– Links to other entities (place, involved people, ...)

• Classification of events required

– Politics, Culture, Sports, …

– e.g., for better querying, filtering, …

• Approach: use Machine Learning for classification!
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Supporting Information Extraction

• Positive Examples for class politics:

– 2011, March 15 - German chancellor Angela Merkel shuts down the 
seven oldest German nuclear power plants.

– 2010, June 3 – Christian Wulff is nominated for President of Germany 
by Angela Merkel.

• Negative Examples for class politics: 

– 2010, July 7 – Spain defeats Germany 1-0 to win its semi-final and for 
its first time, along with Netherlands make the 2010 FIFA World Cup 
Final.

– 2012, February 16 – Roman Lob is selected to represent Germany in 
the Eurovision Song Contest.
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Supporting Information Extraction

• Positive Examples for class politics:

– 2011, March 15 - German chancellor Angela Merkel shuts down the 
seven oldest German nuclear power plants.

– 2010, June 3 – Christian Wulff is nominated for President of Germany 
by Angela Merkel.

• Negative Examples for class politics: 

– 2010, July 7 – Spain defeats Germany 1-0 to win its semi-final and for 
its first time, along with Netherlands make the 2010 FIFA World Cup 
Final.

– 2012, February 16 – Roman Lob is selected to represent Germany in 
the Eurovision Song Contest.

• Possible learned model:

– "Angela Merkel" → Politics



08/03/13 Chris Bizer, Heiko Paulheim 44 

Supporting Information Extraction

• Possibly Learned Model:

– "Angela Merkel" → Politics

• There are some problems with that model

• Missing generality (again: overfitting!)

– 2012, May 13, Elections in North Rhine-Westphalia – Hannelore Kraft is 
elected to continue as Minister-President, heading an SPD-Green 
coalition.

• Large amount of training examples required

– At least one positive and one negative example per politician

– but training examples are expensive...
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Supporting Information Extraction

• Possibly Learned Model:

– "Angela Merkel" → Politics

• How can we do better?

• Background knowledge from Linked Open Data

– 2011, March 15 - German chancellor Angela Merkel [class: Politician] 
shuts down the seven oldest German nuclear power plants.

– 2012, May 13, Elections in North Rhine-Westphalia – Hannelore Kraft 
[class: Politician] is elected to continue as Minister-President, heading 
an SPD-Green coalition.

• Model learned in that case:

– "[class: Politician]" → Politics
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Supporting Information Extraction

• Model learned in that case:

– "[class: Politician]" → Politics

• Much more general

– Can also classify events with politicians 
not contained in the training set

• Less training examples required

– A few events with politicians, athletes, singers, ... are enough



08/03/13 Chris Bizer, Heiko Paulheim 47 

Supporting Information Extraction

• Experiments on Wikipedia data

– >10 categories

– 1,000 labeled examples as training set

– Classification accuracy: 80%

• Plus:

– We have trained a language-independent model!

• often, models are like "elect*" → Politics

– 22. Mai 2012: Peter Altmaier [class: Politician] wird als Nachfolger von 
Norbert Röttgen [class: Politician] zum Bundesumweltminister ernannt.

– 6 januari 2012: Jonas Sjöstedt [class: Politician] väljs till ny partiledare 
för Vänsterpartiet efter Lars Ohly [class: Politician].
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Using the Events

• E.g., for annotating time series graphs
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Using the Events

• Annotating a Time Series
– e.g., the stock market price of Apple_Inc.

• Starting point: a link to DBpedia
– e.g., dbpedia:Apple_Inc.

• Simple approach: retrieve all the events for that entity
– Problem: low recall

• Naive “improvement”:
– Also include events for entities linked to dbpedia:Apple_Inc. in DBpedia

– e.g.: dbpedia:IPhone

– Problem: extremely low precision

– Due to frequent entities such as dbpedia:United_States
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Relatedness in DBpedia

• Required: entities that are closely related to dbpedia:Apple_Inc.

• Problem:

– There is no notion of proximity, predicate weights, etc. in DBpedia

– And in LOD in general

• Possible solution: let humans rank proximity

– Subjective

– Scales badly

• Required:

– Automatic approximation
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Relatedness in DBpedia

• Good approximation: Normalized Google Distance

– How frequently do two terms co-occur in websites?

– E.g., “Apple” and “iPhone” co-occur quite frequently

– “Apple” and “United States” co-occur less frequently

• Problem:

– Search engines are not for free (for machine requests)

– Pairwise ranking of all DBpedia entities would cost much money

• Solution:

– Retrieve search engine based rankings for a small sample

– Approximate rankings by machine learning model
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Relatedness in DBpedia

• DBpedia FindRelated Service

– Trained on 10,000 statements labeled with NGD

– >50 Features: network based, linguistic, dataset specific

– Fair correlation with NGD

– Live: 
http://wifo5-21.informatik.uni-mannheim.de:8080/DBpediaFindRelated/

• Use in Time Series Application:

– Increases recall up to 25%

– Fair tradeoff with precision (<10%)

– Hundreds of entities added to the search!

http://wifo5-21.informatik.uni-mannheim.de:8080/DBpediaFindRelated/
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Time Series Application – The Big Picture

Event
Dataset

DBpedia
Start concept:
Apple_Inc.

Further Concepts:
Apple_Inc.
IPhone
IPad
Steve_Jobs
...

Events:
“Tim Cook arrives in 
China for talks
with government 
officials ...”
...
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Intermediate Recap

• What we have seen so far:

– Linked Open Data as background knowledge in various tasks

– Combination with Machine Learning for intelligent applications

– Additional dimensions on the data (proximity measures)



08/03/13 Chris Bizer, Heiko Paulheim 55 

Building Knowledge-Intensive Applications
with Linked Open Data*

Chris Bizer, Heiko Paulheim, University of Mannheim

*using examples from the domains
sex, drugs, and crime
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And now for Something Completely Different

• Who are these men?
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Statistical Data

• Statistics are very wide spread

– Quality of living in cities

– Corruption by country

– Fertility rate by country

– Suicide rate by country

– Box office revenue of films

– ...
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Statistical Data

• Questions we are often interested in

– Why does city X have a high/low quality of living?

– Why is the corruption higher in country A than in country B?

– Will a new film create a high/low box office revenue?

• i.e., we are looking for

– explanations

– forecasts (e.g., extrapolations)
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Statistical Data

http://xkcd.com/605/
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Statistical Data

• What statistics typically look like
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Statistical Data

• There are powerful tools for finding correlations etc.

– but many statistics cannot be interpreted directly

– background knowledge is missing

• So where do we get background knowledge from?

– with as little efforts as possible



08/03/13 Chris Bizer, Heiko Paulheim 62 

Statistical Data

• What we have
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Statistical Data

• What we need
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Possible Sources for Background Knowledge
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...and we've already seen FeGeLOD

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

Named Entity
Recognition

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

Feature
Generation

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

City_URI_dbpedia-owl:populationTotal

141471

City_URI_...

...

Feature
Selection

ISBN

3-2347-3427-1

City

Darmstadt

# sold

124

City_URI

http://dbpedia.org/resource/Darmstadt

City_URI_dbpedia-owl:populationTotal

141471
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Statistical Data

• Adding background knowledge

– FeGeLOD framework

• Correlation analysis

– e.g., Pearson Correlation Coefficient

• Rule learning

– e.g., Association Rule Mining

– e.g., Subgroup Discovery

• Further data preprocessing

– depending on approach

– e.g., discretization
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Prototype Tool: Explain-a-LOD

• Loads a statistics file (e.g., CSV)

• Adds background knowledge

• Presents explanations
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Presenting Explanations

• Verbalization with simple patterns

– e.g., negative correlation between population and quality of living

– "A city which has a low population has a high quality of living"

• Color coding

– By correlation coefficient, confidence/support of rules, etc.
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Statistical Data: Examples

• Data Set: Mercer Quality of Living

– Quality of living in 216 cities word wide

– norm: NYC=100 (value range 23-109)

– As of 1999

– http://across.co.nz/qualityofliving.htm

• LOD data sets used in the examples:

– DBpedia

– CIA World Factbook for statistics by country

http://across.co.nz/qualityofliving.htm
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Statistical Data: Examples

• Examples for low quality cities

– big hot cities (junHighC >= 27 and areaTotalKm >= 334)

– cold cities where no music has ever been recorded
(recordedIn_in = false and janHighC <= 16)

– latitude <= 24 and longitude <= 47

• a very accurate rule

• but what's the interpretation?
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Statistical Data: Examples

• Data Set: Transparency International

– 177 Countries and a corruption perception indicator 
(between 1 and 10)

– As of 2010

– http://www.transparency.org/cpi2010/results
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Statistical Data: Examples

• Example rules for countries with low corruption

– HDI > 78%

• Human Development Index, calculated from
live expectancy, education level, economic performance

– OECD member states

– Foundation place of more than nine organizations

– More than ten mountains

– More than ten companies with their headquarter in that state, 
but less than two cargo airlines
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Statistical Data: Examples

• Data Set: Burnout rates

– 16 German DAX companies

– Absolute and relative numbers

– As of 2011

– http://de.statista.com/statistik/daten/studie/226959/umfrage/burn-out-
erkrankungen-unter-mitarbeitern-ausgewaehlter-dax-unternehmen/
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Statistical Data: Examples

• Findings for burnout rates

– Positive correlation between turnover and burnout rates

– Car manufacturers are less prone to burnout

– German companies are less prone to burnout than international ones

• Exception: Frankfurt
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Statistical Data: Examples

• Data Set: Antidepressives consumption

– In European countries

– Source: OECD

– http://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-
glance-2011/pharmaceutical-consumption_health_glance-2011-39-en
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Statistical Data: Examples

• Findings for antidepressives consumption

– Larger countries have higher consumption

– Low HDI → high consumption

– By geography:

• Nordic countries, countries at the Atlantic: high

• Mediterranean: medium

• Alpine countries: low

– High average age → high consupmtion

– High birth rates → high consumption
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Building Knowledge-Intensive Applications
with Linked Open Data*

Chris Bizer, Heiko Paulheim, University of Mannheim

*using examples from the domains
sex, drugs, and crime
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Statistical Data: Examples

• Data Set: Suicide rates

– By country

– OECD states

– As of 2005

– http://www.washingtonpost.com/wp-srv/world/suiciderate.html
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Statistical Data: Examples

• Findings for suicide rates 

– Democraties have lower suicide rates than other forms of government

– High HDI → low suicide rate

– High population density → high suicide rate

– By geography:

• At the sea → low

• In the mountains → high

– High Gini index → low suicide rate

• High Gini index ↔ unequal distribution of wealth

– High usage of nuclear power → high suicide rates



08/03/13 Chris Bizer, Heiko Paulheim 81 

Statistical Data: Examples

• Data set: sexual activity

– Percentage of people having sex weekly

– By country

– Survey by Durex 2005-2009

– http://chartsbin.com/view/uya
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Statistical Data: Examples

• Findings on sexual activity

– By geography:

• High in Europe, low in Asia

• Low in Island states

– By language:

• English speaking: low

• French speaking: high

– Low average age → high activity

– High GDP per capita → low activity

– High unemployment rate → high activity

– High number of ISP providers → low activity
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Building Knowledge-Intensive Applications
with Linked Open Data*

Chris Bizer, Heiko Paulheim, University of Mannheim

*using examples from the domains
sex, drugs, and crime
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Try it... but be careful!

• Download from

http://www.ke.tu-darmstadt.de/resources/explain-a-lod

• including a demo video, papers, etc.

• Pitfalls

– Open world assumption

– LOD may be noisy

– Biases

– ...
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Try it... but be careful!

• Download from

http://www.ke.tu-darmstadt.de/resources/explain-a-lod

• including a demo video, papers, etc.

http://xkcd.com/552/
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Conclusions

• Many tasks require massive background knowledge

– Can be acquired from LOD

– E.g., FeGeLOD framework

• Machine learning is often useful to...

– make sense using Linked Open Data

– answer non-trivial questions

– Add additional knowledge dimensions (e.g., similarity)
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