
Answer Set Programming

Wolfgang Faber

University of Calabria, Italy
soon: University of Huddersfield, UK

wf@wfaber.com

RW2013, Mannheim, Germany

Wolfgang Faber Answer Set Programming

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Part I

From Datalog to Answer Set
Programming

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Setting

ASP

AI Logic

Databases

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Early Roots: Constructive Logic

Intuitionistic or Constructive Logic

Luitzen Egbertus Jan Brouwer Arend Heyting

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Early Roots: Game Theory

Stability conditions in mathematical games and economy

Oskar Morgenstern John Von Neumann

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Difference to Classical Logic

Main Differences to Classical Logic:

Closed World Assumption
Implicit Necessity

Unique Name Assumption
Unique Identifiers

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Closed World Assumption

Zeit Linie Richtung
Time Line Destination

0.00 - 6.00
00.09
tägl

60 Mannheim, Hauptbahnhof 00.14

00.39
tägl

60 Mannheim, Hauptbahnhof 00.44

05.54
Mo-Fr

60 Mannheim, Lanzvilla 06.09
nicht am 3.10., 1.11.

06.14
Mo-Fr

60 Mannheim, Lanzvilla 06.29
nicht am 3.10., 1.11.

06.34
Mo-Fr

60 Mannheim, Lanzvilla 06.49
nicht am 3.10., 1.11.

06.54
Mo-Fr

60 Mannheim, Lanzvilla 07.09
nicht am 3.10., 1.11.

7.00 - 8.00
07.14
Mo-Fr

60 Mannheim, Lanzvilla 07.29
nicht am 3.10., 1.11.

07.34
Mo-Fr

60 Mannheim, Lanzvilla 07.49
nicht am 3.10., 1.11.

07.54
Mo-Fr

60 Mannheim, Lanzvilla 08.09
nicht am 3.10., 1.11.

08.14
Mo-Fr

60 Mannheim, Lanzvilla 08.29
nicht am 3.10., 1.11.

08.34
Mo-Fr

60 Mannheim, Lanzvilla 08.49
nicht am 3.10., 1.11.

08.39
Sa/So/Ft

60 Mannheim, Lanzvilla 08.57
zusätzlich am 3.10., 1.11.

08.54
Mo-Fr

60 Mannheim, Lanzvilla 09.11
nicht am 3.10., 1.11.

9.00 - 10.00
09.09
Sa/So/Ft

60 Mannheim, Lanzvilla 09.27
zusätzlich am 3.10., 1.11.

09.14
Mo-Fr

60 Mannheim, Lanzvilla 09.31
nicht am 3.10., 1.11.

09.34
Mo-Fr

60 Mannheim, Lanzvilla 09.51
nicht am 3.10., 1.11.

09.39
Sa/So/Ft

60 Mannheim, Lanzvilla 09.57
zusätzlich am 3.10., 1.11.

09.54
Mo-Fr

60 Mannheim, Lanzvilla 10.11
nicht am 3.10., 1.11.

10.09
Sa/So/Ft

60 Mannheim, Lanzvilla 10.27
zusätzlich am 3.10., 1.11.

10.14
Mo-Fr

60 Mannheim, Lanzvilla 10.31
nicht am 3.10., 1.11.

10.34
Mo-Fr

60 Mannheim, Lanzvilla 10.51
nicht am 3.10., 1.11.

10.39
Sa/So/Ft

60 Mannheim, Lanzvilla 10.57
zusätzlich am 3.10., 1.11.

10.54
Mo-Fr

60 Mannheim, Lanzvilla 11.11
nicht am 3.10., 1.11.

11.00 - 12.00
11.09
Sa/So/Ft

60 Mannheim, Lanzvilla 11.27
zusätzlich am 3.10., 1.11.

11.14
Mo-Fr

60 Mannheim, Lanzvilla 11.31
nicht am 3.10., 1.11.

11.34
Mo-Fr

60 Mannheim, Lanzvilla 11.51
nicht am 3.10., 1.11.

11.39
Sa/So/Ft

60 Mannheim, Lanzvilla 11.57
zusätzlich am 3.10., 1.11.

11.54
Mo-Fr

60 Mannheim, Lanzvilla 12.11
nicht am 3.10., 1.11.

12.09
Sa/So/Ft

60 Mannheim, Lanzvilla 12.27
zusätzlich am 3.10., 1.11.

12.14
Mo-Fr

60 Mannheim, Lanzvilla 12.31
nicht am 3.10., 1.11.

12.34
Mo-Fr

60 Mannheim, Lanzvilla 12.51
nicht am 3.10., 1.11.

12.39
Sa/So/Ft

60 Mannheim, Lanzvilla 12.57
zusätzlich am 3.10., 1.11.

12.54
Mo-Fr

60 Mannheim, Lanzvilla 13.11
nicht am 3.10., 1.11.

13.00 - 14.00
13.09
Sa/So/Ft

60 Mannheim, Lanzvilla 13.27
zusätzlich am 3.10., 1.11.

13.14
Mo-Fr

60 Mannheim, Lanzvilla 13.31
nicht am 3.10., 1.11.

13.34
Mo-Fr

60 Mannheim, Lanzvilla 13.51
nicht am 3.10., 1.11.

13.39
Sa/So/Ft

60 Mannheim, Lanzvilla 13.57
zusätzlich am 3.10., 1.11.

13.54
Mo-Fr

60 Mannheim, Lanzvilla 14.11
nicht am 3.10., 1.11.

Zeit Linie Richtung
Time Line Destination

14.09
Sa/So/Ft

60 Mannheim, Lanzvilla 14.27
zusätzlich am 3.10., 1.11.

14.14
Mo-Fr

60 Mannheim, Lanzvilla 14.31
nicht am 3.10., 1.11.

14.34
Mo-Fr

60 Mannheim, Lanzvilla 14.51
nicht am 3.10., 1.11.

14.39
Sa/So/Ft

60 Mannheim, Lanzvilla 14.57
zusätzlich am 3.10., 1.11.

14.54
Mo-Fr

60 Mannheim, Lanzvilla 15.11
nicht am 3.10., 1.11.

15.00 - 16.00
15.09
Sa/So/Ft

60 Mannheim, Lanzvilla 15.27
zusätzlich am 3.10., 1.11.

15.14
Mo-Fr

60 Mannheim, Lanzvilla 15.31
nicht am 3.10., 1.11.

15.34
Mo-Fr

60 Mannheim, Lanzvilla 15.51
nicht am 3.10., 1.11.

15.39
Sa/So/Ft

60 Mannheim, Lanzvilla 15.57
zusätzlich am 3.10., 1.11.

15.54
Mo-Fr

60 Mannheim, Lanzvilla 16.11
nicht am 3.10., 1.11.

16.09
Sa/So/Ft

60 Mannheim, Lanzvilla 16.27
zusätzlich am 3.10., 1.11.

16.14
Mo-Fr

60 Mannheim, Lanzvilla 16.31
nicht am 3.10., 1.11.

16.34
Mo-Fr

60 Mannheim, Lanzvilla 16.51
nicht am 3.10., 1.11.

16.39
Sa/So/Ft

60 Mannheim, Lanzvilla 16.57
zusätzlich am 3.10., 1.11.

16.54
Mo-Fr

60 Mannheim, Lanzvilla 17.11
nicht am 3.10., 1.11.

17.00 - 18.00
17.09
Sa/So/Ft

60 Mannheim, Lanzvilla 17.27
zusätzlich am 3.10., 1.11.

17.14
Mo-Fr

60 Mannheim, Lanzvilla 17.31
nicht am 3.10., 1.11.

17.34
Mo-Fr

60 Mannheim, Lanzvilla 17.51
nicht am 3.10., 1.11.

17.39
Sa/So/Ft

60 Mannheim, Lanzvilla 17.57
zusätzlich am 3.10., 1.11.

17.54
Mo-Fr

60 Mannheim, Lanzvilla 18.11
nicht am 3.10., 1.11.

18.09
Sa/So/Ft

60 Mannheim, Lanzvilla 18.27
zusätzlich am 3.10., 1.11.

18.14
Mo-Fr

60 Mannheim, Lanzvilla 18.31
nicht am 3.10., 1.11.

18.34
Mo-Fr

60 Mannheim, Lanzvilla 18.51
nicht am 3.10., 1.11.

18.39
Sa/So/Ft

60 Mannheim, Lanzvilla 18.57
zusätzlich am 3.10., 1.11.

18.54
Mo-Fr

60 Mannheim, Hauptbahnhof 19.01
nicht am 3.10., 1.11.

19.00 - 20.00
19.09
Sa/So/Ft

60 Mannheim, Lanzvilla 19.27
zusätzlich am 3.10., 1.11.

19.14
Mo-Fr

60 Mannheim, Lanzvilla 19.31
nicht am 3.10., 1.11.

19.39
Mo-Fr

60 Mannheim, Hauptbahnhof 19.44
nicht am 3.10., 1.11.

19.39
Sa/So/Ft

60 Mannheim, Lanzvilla 19.57
zusätzlich am 3.10., 1.11.

20.09
Mo-Fr

60 Mannheim, Hauptbahnhof 20.14
nicht am 3.10., 1.11.

20.09
Sa/So/Ft

60 Mannheim, Lanzvilla 20.27
zusätzlich am 3.10., 1.11.

20.39
tägl

60 Mannheim, Hauptbahnhof 20.44

21.00 - 23.00
21.09
tägl

60 Mannheim, Hauptbahnhof 21.14

21.39
tägl

60 Mannheim, Hauptbahnhof 21.44

22.09
tägl

60 Mannheim, Hauptbahnhof 22.14

22.39
tägl

60 Mannheim, Hauptbahnhof 22.44

23.09
tägl

60 Mannheim, Hauptbahnhof 23.14

23.39
tägl

60 Mannheim, Hauptbahnhof 23.44

Abfahrt Mannheim, Universität West
Gültig ab 09.06.2013

Handy: http://mobil.vrn.de - Internet: http://www.vrn.de

Is there a bus scheduled at 9.34? At 9.40?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Closed World Assumption

Is there a bus scheduled at 9.34? At 9.40?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Closed World Assumption

Is there a bus scheduled at 9.34? At 9.40?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Setting

ASP

AI Logic

Databases

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Setting

ASP

AI Logic

Databases

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Model

Relational Model – Codd 1970

Edgar Frank Codd

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relations

Schema:
Domain (denumerable set)
Attributes (denumerable set)
Relations (subset of attributes)

Instances:
Relation instances: Sets of tuples.
Each tuple is a function from the relation’s attributes to
domain elements.
Database instance: Collection of relation instances.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relations: Example

A � tX ,Y u,D � ta,b, c,du
R � tX ,Y u,S � tY u

IpRq � tt1, t2u
t1pX q � a, t1pY q � b, t2pX q � c, t2pY q � d
IpSq � tt3u, t3pY q � d

IpRq � txa,by, xc,dyu, IpSq � txdyu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relations: Example

R X Y
a b
c d

S Y
d

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Algebra

Basic Operators:
σ Selection
π Projection
� Cartesian Product
Y Union
� Difference

Definable using Basic Operators:
' Join [R ' S � σF pR � Sq]

 Semijoin [R
 S � πSchemapRqpR ' Sq]
X Intersection

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Algebra Example

R � S XR YR YS
a b d
c d d

σ2�3pR � Sq XR YR YS
c d d

π1,2pσ2�3pR � Sqq X Y
c d

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relations – Logical View

Schema:
Domain – Constant symbols (denumerable set)
Relations – Predicate symbols (attributes are not explicitly
named)
Attributes – implicit by predicate arity

Instances:
Relation instances: Subset of ground instances for relation
predicate.
Database instance: Subset of Herbrand Base.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relations: Example

D � ta,b, c,du
R{2,S{1

IpRq � tRpa,bq,Rpc,dqu, IpSq � tSpdqu

I � tRpa,bq,Rpc,dq,Spdqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus

Based on First-Order Logic
Atomic formulas rpX1, . . . ,Xnq

Comparison formulas X � 2 or X � Y (pre-interpreted
predicate)
Composed formulas using , ^, D
Ñ, Ø, _, @ added as “syntactic sugar”

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus

Relational Algebra expressions represent relation
instances
In Relational Calculus: te1, . . . ,en | φu

φ is a Relational Calculus formula
e1, . . . ,en: terms containing exactly the free variables of φ

Collect all substitutions for free variables such that φ is true
in the interpretation formed by the database.
The defined relation is obtained by applying all of these
substitutions to e1, . . . ,en.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Relational Calculus Examples

tX ,Y ,Z | RpX ,Y q ^ SpZ qu � tT pa,b,dq,T pc,d ,dqu � R � S

tX ,Y ,Y | RpX ,Y q ^ SpY qu � tT pc,d ,dqu � σ2�3pR � Sq

tX ,Y | RpX ,Y q ^ SpY qu � tT pc,dqu � π1,2pσ2�3pR � Sqq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Algebra as Calculus

σS r tX1, . . . ,Xn | rpX1, . . . ,Xnq ^ Su
πi r tXi | DX1, . . . ,Xi�1,Xi�1, . . . ,Xn : rpX1, . . . ,Xnqu

r � s
tX1, . . . ,Xn,Y1, . . . ,Ym | rpX1, . . . ,Xnq ^ spY1, . . . ,Ymqu

r Y s tX1, . . . ,Xn | rpX1, . . . ,Xnq _ spX1, . . . ,Xnqu

r � s tX1, . . . ,Xn | rpX1, . . . ,Xnq ^ spX1, . . . ,Xnqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Calculus: More then Algebra

Problematic expressions:

tX | Rpa,X qu
tX ,Y | Rpa,X q _ RpY ,bqu
tX | @Y : RpX ,Y qu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Calculus: More then Algebra

Using the domain of the database:
tX | Rpa,X qu

all constants c of the domain such that pa, cq is no tuple in R
will be infinite if the domain is infinite

tX ,Y | Rpa,X q _ RpY ,bqu
if R contains some tuple pa,bq, the result is pb, cq for all
constants c in the domain
will be infinite if the domain is infinite

tX | @Y : RpX ,Y qu
this will be always empty if the domain is infinite, because
relations are finite

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Calculus: More then Algebra

Using the active domain of the database (only constants
appearing in the database and the query):

tX | Rpa,X qu
all constants c in the database such that pa, cq is no tuple in
R
will change if some unrelated constant is added

tX ,Y | Rpa,X q _ RpY ,bqu
if R contains some tuple pa,bq, the result is pb, cq for all
constants c in the database
will change if some unrelated constant is added

tX | @Y : RpX ,Y qu
will unintuitively become empty if an unrelated constant is
added

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Natural versus Active Domain Semantics

1 Natural Semantics: Interpretations from Database Domain
pro: Classical First-Order theory
contra: Produces infinite relations
contra: Quantification over infinite sets

2 Active Domain Semantics: Interpretations from Active
Domain

pro: Always finite
contra: Frequently gives unintuitive results
contra: Active Domain not always available

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Domain Independent Queries

Idea: Consider only those queries for which Natural and Active
Domain Semantics coincide.

Definition
A query in the relational calculus is domain independent, if it
yields the same answer using the natural (full) domain and the
active domain.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Domain Independent Queries

Idea: Consider only those queries for which Natural and Active
Domain Semantics coincide.

Definition
A query in the relational calculus is domain independent, if it
yields the same answer using the natural (full) domain and the
active domain.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Domain Independent Queries

Theorem
Any query of the Relational Algebra can be written as a domain
independent query of Relational Calculus, and vice versa.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Domain Independent Queries

Theorem
Any query of the Relational Algebra can be written as a domain
independent query of Relational Calculus, and vice versa.

Great, let’s use only domain independent queries of Relational
Calculus!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Domain Independent Queries

Theorem
Deciding whether a query of Relational Calculus is domain
independent, is undecidable.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Safe Range Queries

Define a syntactically restricted fragment of Relational Calculus
queries, which is guaranteed to be domain independent.

1 Transform formula into a normal form (SRNF).
2 Determine range restricted variables of the SRNF formula.
3 Check whether the range restricted variables are exactly

the free variables.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

SRNF

Normalize variables: Rename variables, so that each
quantifier binds a distinct variable and free and bound
variables are different.
Remove @: @X : φñ DX : φ

Remove Ñ: φÑ ψ ñ φ_ ψ

Remove : φñ φ

Push : pφ^ ψq ñ p φ_ ψq

Push : pφ_ ψq ñ p φ^ ψq

Apply these rules as until none is applicable.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Range Restricted Variables

Intuition: In formulas, recursively determine variables, for which
the value is determined by the database instance.

Equality needs caution
Disjunction?
Existential quantification?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Range Restriction Algorithm

Function rr
Input: Formula φ in SRNF
Output: Subset of free variables of φ or K
case φ of

Rpt1, . . . , tnq: rrpφq � all variables in t1, . . . , tn;
X � a or a � X : rrpφq � tXu;
φ1 ^ φ2: rrpφq � rrpφ1q Y rrpφ2q;
φ1 ^ X � Y : rrpφq �"

rrpφ1q if tX ,Y u X rrpφ1q � H;
rrpφ1q Y tX ,Y u otherwise;

φ1 _ φ2: rrpφq � rrpφ1q X rrpφ2q;
 φ1: rrpφq � H;
DX : ψ: if X P rrpψq then rrpφq � rrpψqztXu else returnK;

Assumption: Set operations with K always result in K.
Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Safe Range Queries

Definition
A Relational Calculus query te1, . . . ,en | φu is safe range, if
rrpSRNF pφqq is equal to the free variables in φ.

Theorem
Each safe range query is domain independent.

Theorem
Any safe range query can be written as a query of Relational
Algebra, and vice versa.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Safe Range Queries

Definition
A Relational Calculus query te1, . . . ,en | φu is safe range, if
rrpSRNF pφqq is equal to the free variables in φ.

Theorem
Each safe range query is domain independent.

Theorem
Any safe range query can be written as a query of Relational
Algebra, and vice versa.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Relational Databases
Relational Model and Logic
Domain Independence

Safe Range Queries

Definition
A Relational Calculus query te1, . . . ,en | φu is safe range, if
rrpSRNF pφqq is equal to the free variables in φ.

Theorem
Each safe range query is domain independent.

Theorem
Any safe range query can be written as a query of Relational
Algebra, and vice versa.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Expressivity

Some simple problems cannot be represented in relational
calculus.
Example: Reachability on deterministic graphs.
Holds also for relational algebra, SQL-92 etc.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Reachability on Deterministic Graphs

Prototypical problem for LOGSPACE!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Reachability on Deterministic Graphs

Prototypical problem for LOGSPACE!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Transitive Closure

Key notion: Transitive Closure

Definition
Given graph G = xV ,Ey, E � V � V , and a,b P V , the transitive
closure TCpGq � V � V is:

TCpGq :� tpx , yq | px , yq P Eu
Ytpx , yq | px , zq P TCpGq ^ pz, yq P TCpGqu

Note: TCpGq appears in its own definition.
In relational calculus we cannot refer to what we define.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Transitive Closure

Key notion: Transitive Closure

Definition
Given graph G = xV ,Ey, E � V � V , and a,b P V , the transitive
closure TCpGq � V � V is:

TCpGq :� tpx , yq | px , yq P Eu
Ytpx , yq | px , zq P TCpGq ^ pz, yq P TCpGqu

Note: TCpGq appears in its own definition.
In relational calculus we cannot refer to what we define.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Transitive Closure

Key notion: Transitive Closure

Definition
Given graph G = xV ,Ey, E � V � V , and a,b P V , the transitive
closure TCpGq � V � V is:

TCpGq :� tpx , yq | px , yq P Eu
Ytpx , yq | px , zq P TCpGq ^ pz, yq P TCpGqu

Note: TCpGq appears in its own definition.
In relational calculus we cannot refer to what we define.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Idea: Use Horn clauses for named definitions.
It is then possible to write definitions using the concept
being defined.
Positive Datalog

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Language Elements

Set of extensional predicate symbols PS
Each predicate symbol has an associated arity
ar : PS Ñ N0

Set of constant symbols CS
Set of variable symbols VS

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Syntax

A Datalog rule is of the form:

r1pt11 , . . . , tn1q Ð r2pt12 , . . . , tn2q, . . . , rmpt1m , . . . , tnmq.

m ¥ 1
r1, . . . , rm P PS
t11 , . . . , tnm P CSY VS
@i 1 ¤ i ¤ m : arpriq � ni

ppt11 Y . . .Y tn1q X VSq � ppt12 Y . . .Y tnmq X VSq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Syntax

A Datalog rule is of the form:

tt11 , . . . , tn1 | D . . . : r2pt12 , . . . , tn2q ^ . . .^ rmpt1m , . . . , tnmqu

m ¥ 1
r1, . . . , rm P PS
t11 , . . . , tnm P CSY VS
@i 1 ¤ i ¤ m : arpriq � ni

ppt11 Y . . .Y tn1qXVSq � ppt12 Y . . .Y tnmqXVSq Safe range!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Syntax

r1pt11 , . . . , tn1q Ð r2pt12 , . . . , tn2q, . . . , rmpt1m , . . . , tnmq.

Hprq � tr1pt11 , . . . , tn1qu

Bprq � tr2pt12 , . . . , tn2q, . . . , rmpt1m , . . . , tnmqu

V prq � tt11 , . . . , tnmu X VS
Cprq � tt11 , . . . , tnmu X CS
Hprq is the head of r .
Bprq is the body of r .
A Datalog program is a set of rules.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Semantics

Intuitively: For each rule r , whenever Bprq is true, Hprq should
also be true. Bprq � H is considered to be true.
Different ways for defining the semantics:

model theory
fixpoint theory
proof theory

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Semantics

Intuitively: For each rule r , whenever Bprq is true, Hprq should
also be true. Bprq � H is considered to be true.
Different ways for defining the semantics:

model theory
fixpoint theory
proof theory

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Model Theory

Definition (Herbrand Universe)

HUpPq �
¤
rPP

Cprq

Definition (Herbrand Base)

HBpPq � trpt1, . . . , tnq | r P PS,
t1, . . . , tn P HUpPq,arprq � nu

HUpPq: Constants of the program (active domain!)
HBpPq: Ground atoms constructable from HUpPq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Model Theory

Definition (Herbrand Universe)

HUpPq �
¤
rPP

Cprq

Definition (Herbrand Base)

HBpPq � trpt1, . . . , tnq | r P PS,
t1, . . . , tn P HUpPq,arprq � nu

HUpPq: Constants of the program (active domain!)
HBpPq: Ground atoms constructable from HUpPq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Model Theory

Definition (Herbrand Universe)

HUpPq �
¤
rPP

Cprq

Definition (Herbrand Base)

HBpPq � trpt1, . . . , tnq | r P PS,
t1, . . . , tn P HUpPq,arprq � nu

HUpPq: Constants of the program (active domain!)
HBpPq: Ground atoms constructable from HUpPq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Base

Example

Pr � t arcpa,bq.
arcpb,cq.
reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

HUpPr q � ta,b,cu
HBpPr q � tarcpa,aq,arcpa,bq,arcpa,cq,

arcpb,aq,arcpb,bq,arcpb,cq,
arcpc,aq,arcpc,bq,arcpc,cq,
reachablepaq,reachablepbq,reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Base

Example

Pr � t arcpa,bq.
arcpb,cq.
reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

HUpPr q � ta,b,cu
HBpPr q � tarcpa,aq,arcpa,bq,arcpa,cq,

arcpb,aq,arcpb,bq,arcpb,cq,
arcpc,aq,arcpc,bq,arcpc,cq,
reachablepaq,reachablepbq,reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Instantiation

Definition
Valuation vPprq of a rule r : Set of all substitutions
V prq Ñ HUpPq

Definition (Instantiation of a rule r)

GroundPprq �
�

vPvP prq vprq

Definition (Instantiation of a program P)

GroundpPq �
�

rPP GroundPprq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Instantiation

Definition
Valuation vPprq of a rule r : Set of all substitutions
V prq Ñ HUpPq

Definition (Instantiation of a rule r)

GroundPprq �
�

vPvP prq vprq

Definition (Instantiation of a program P)

GroundpPq �
�

rPP GroundPprq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Instantiation

Definition
Valuation vPprq of a rule r : Set of all substitutions
V prq Ñ HUpPq

Definition (Instantiation of a rule r)

GroundPprq �
�

vPvP prq vprq

Definition (Instantiation of a program P)

GroundpPq �
�

rPP GroundPprq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Instantiation

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

GroundpPr q � tarcpa,bq. arcpb,cq. reachablepaq.
reachablepaq Ð arcpa,aq,reachablepaq.
reachablepbq Ð arcpa,bq,reachablepaq.
reachablepcq Ð arcpa,cq,reachablepaq.
reachablepaq Ð arcpb,aq,reachablepbq.
reachablepbq Ð arcpb,bq,reachablepbq.
reachablepcq Ð arcpb,cq,reachablepbq.
reachablepaq Ð arcpc,aq,reachablepcq.
reachablepbq Ð arcpc,bq,reachablepcq.
reachablepcq Ð arcpc,cq,reachablepcq. u

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Herbrand Models

Definition ((Herbrand-) Interpretations I for P)

I � HBpPq

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pHprq � Mq _ pBprq � Mq

“If the body is true, the head must be true.”

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pBprq � Mq Ñ pHprq � Mq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Herbrand Models

Definition ((Herbrand-) Interpretations I for P)

I � HBpPq

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pHprq � Mq _ pBprq � Mq

“If the body is true, the head must be true.”

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pBprq � Mq Ñ pHprq � Mq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Herbrand Models

Definition ((Herbrand-) Interpretations I for P)

I � HBpPq

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pHprq � Mq _ pBprq � Mq

“If the body is true, the head must be true.”

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pBprq � Mq Ñ pHprq � Mq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Herbrand Models

Definition ((Herbrand-) Interpretations I for P)

I � HBpPq

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pHprq � Mq _ pBprq � Mq

“If the body is true, the head must be true.”

Definition ((Herbrand-) Models for P)

M � HBpPq such that
@r P GroundpPq : pBprq � Mq Ñ pHprq � Mq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Models

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

M1 � t arcpa,bq,arcpb,cq,
reachablepaq,reachablepbq,reachablepcqu

M2 � HBpPr q

All M : M1 � M � M2 are models and only these.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Models

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

M1 � t arcpa,bq,arcpb,cq,
reachablepaq,reachablepbq,reachablepcqu

M2 � HBpPr q

All M : M1 � M � M2 are models and only these.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Models

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

M1 � t arcpa,bq,arcpb,cq,
reachablepaq,reachablepbq,reachablepcqu

M2 � HBpPr q

All M : M1 � M � M2 are models and only these.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Models

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

M1 � t arcpa,bq,arcpb,cq,
reachablepaq,reachablepbq,reachablepcqu

M2 � HBpPr q

All M : M1 � M � M2 are models and only these.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Herbrand Models

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

M1 � t arcpa,bq,arcpb,cq,
reachablepaq,reachablepbq,reachablepcqu

M2 � HBpPr q

All M : M1 � M � M2 are models and only these.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Minimal Models

Theorem
HBpPq is always a model for any Datalog program P.

Theorem
Each Datalog program P has a unique subset minimal model
MMpPq.

Definition
The semantics of a Datalog program P is given by MMpPq

Note: Each element of MMpPq is a logical consequence of P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Minimal Models

Theorem
HBpPq is always a model for any Datalog program P.

Theorem
Each Datalog program P has a unique subset minimal model
MMpPq.

Definition
The semantics of a Datalog program P is given by MMpPq

Note: Each element of MMpPq is a logical consequence of P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Minimal Models

Theorem
HBpPq is always a model for any Datalog program P.

Theorem
Each Datalog program P has a unique subset minimal model
MMpPq.

Definition
The semantics of a Datalog program P is given by MMpPq

Note: Each element of MMpPq is a logical consequence of P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Minimal Models

Theorem
HBpPq is always a model for any Datalog program P.

Theorem
Each Datalog program P has a unique subset minimal model
MMpPq.

Definition
The semantics of a Datalog program P is given by MMpPq

Note: Each element of MMpPq is a logical consequence of P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Concept: Operator

“If we assume that all atoms in I are true, which other atoms
must be true in order to satisfy the program?”

Start with I � H (nothing is true).
Define operator TP .
Apply TP , until there are no further additions.
The obtained result (fixpoint) defines the semantics.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Immediate Consequences

Definition (Operator TP for Datalog program P)

Given an interpretation I,

TPpIq � th | r P GroundpPq,Bprq � I,h P Hprqu

TPpIq extends I, such that unsatisfied rules (w.r.t. I)
become satisfied.
Other rules may become unsatisfied w.r.t. TPpIq.
ñ Iterative application.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Immediate Consequences

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

1 TPr pHq � tarcpa,bq, arcpb,cq, reachablepaqu

2 TPr pTPr pHqq � TPr pHq Y treachablepbqu

3 TPr pTPr pTPr pHqqq � TPr pTPr pHqqYtreachablepcqu

4 TPr pTPr pTPr pTPr pHqqqq � TPr pTPr pTPr pHqqq

5 tarcpa,bq, arcpb,cq,
reachablepaq, reachablepbq, reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Immediate Consequences

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

1 TPr pHq � tarcpa,bq, arcpb,cq, reachablepaqu

2 TPr pTPr pHqq � TPr pHq Y treachablepbqu

3 TPr pTPr pTPr pHqqq � TPr pTPr pHqqYtreachablepcqu

4 TPr pTPr pTPr pTPr pHqqqq � TPr pTPr pTPr pHqqq

5 tarcpa,bq, arcpb,cq,
reachablepaq, reachablepbq, reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Immediate Consequences

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

1 TPr pHq � tarcpa,bq, arcpb,cq, reachablepaqu

2 TPr pTPr pHqq � TPr pHq Y treachablepbqu

3 TPr pTPr pTPr pHqqq � TPr pTPr pHqqYtreachablepcqu

4 TPr pTPr pTPr pTPr pHqqqq � TPr pTPr pTPr pHqqq

5 tarcpa,bq, arcpb,cq,
reachablepaq, reachablepbq, reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Immediate Consequences

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

1 TPr pHq � tarcpa,bq, arcpb,cq, reachablepaqu

2 TPr pTPr pHqq � TPr pHq Y treachablepbqu

3 TPr pTPr pTPr pHqqq � TPr pTPr pHqqYtreachablepcqu

4 TPr pTPr pTPr pTPr pHqqqq � TPr pTPr pTPr pHqqq

5 tarcpa,bq, arcpb,cq,
reachablepaq, reachablepbq, reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Example: Immediate Consequences

Example

Pr � t arcpa,bq. arcpb,cq. reachablepaq.
reachablepYq Ð arcpX,Yq,reachablepXq. u

1 TPr pHq � tarcpa,bq, arcpb,cq, reachablepaqu

2 TPr pTPr pHqq � TPr pHq Y treachablepbqu

3 TPr pTPr pTPr pHqqq � TPr pTPr pHqqYtreachablepcqu

4 TPr pTPr pTPr pTPr pHqqqq � TPr pTPr pTPr pHqqq

5 tarcpa,bq, arcpb,cq,
reachablepaq, reachablepbq, reachablepcqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Properties of TP

Lattice: V � pPpHBpPqq,�q

@X � V : Dinf pX q ^ DsuppX q

inf pV q � H, suppV q � HBpPq

Monotony: X � Y Ñ TPpX q � TPpY q

Continuity: @X � V : TPpsuppX qq � suppTPpX qq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Properties of TP

Lattice: V � pPpHBpPqq,�q

@X � V : Dinf pX q ^ DsuppX q

inf pV q � H, suppV q � HBpPq

Monotony: X � Y Ñ TPpX q � TPpY q

Continuity: @X � V : TPpsuppX qq � suppTPpX qq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Properties of TP

Lattice: V � pPpHBpPqq,�q

@X � V : Dinf pX q ^ DsuppX q

inf pV q � H, suppV q � HBpPq

Monotony: X � Y Ñ TPpX q � TPpY q

Continuity: @X � V : TPpsuppX qq � suppTPpX qq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Properties of TP

Lattice: V � pPpHBpPqq,�q

@X � V : Dinf pX q ^ DsuppX q

inf pV q � H, suppV q � HBpPq

Monotony: X � Y Ñ TPpX q � TPpY q

Continuity: @X � V : TPpsuppX qq � suppTPpX qq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Properties of TP

Lattice: V � pPpHBpPqq,�q

@X � V : Dinf pX q ^ DsuppX q

inf pV q � H, suppV q � HBpPq

Monotony: X � Y Ñ TPpX q � TPpY q

Continuity: @X � V : TPpsuppX qq � suppTPpX qq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Knaster, Tarski, Kleene

Bronisław Knaster Alfred Tarski Stephen Kleene
(1893–1990) (1902–1983) (1909–1994)

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Existence of Fixpoints

Theorem
TP is monotone and continuous on the lattice of interpretations
and subset relations.

Theorem (Knaster-Tarski)
For monotone operators on lattices a least fixpoint exists, and it
is inf ptX | TPpX q � Xuq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Construction of Fixpoints

Theorem (Kleene)
For continuous operators on lattices the least fixpoint can be
computed by iteration starting from the infimum.
Tω
P � supptTi

P | i ¥ 0uq,
T0
P � inf pV q, Ti

P � TPpTi�1
P q

Corollary
Our lattice is finite, therefore the least fixpoint of TP can be
computed by a finite number of iterations starting from H.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

TωP – Minimal Model

Theorem
For all Datalog programs P, we can show Tω

P � MMpPq.

Note: All consequences of a program can be computed by
iteration over the immediate consequences.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

TωP – Minimal Model

Theorem
For all Datalog programs P, we can show Tω

P � MMpPq.

Note: All consequences of a program can be computed by
iteration over the immediate consequences.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Reminder: Horn and Goal Clauses, SLD Resolution

A Horn clause is a clause containing at most one positive
literal.
A Goal clause is a clause containing no positive literal.
SLD Resolution: Linear resolution, where at each step only
goal clauses and (instances of) input clauses are used.

Theorem
SLD resolution is refutation complete for Horn clauses.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

SLD Resolution for Datalog

View rules Horn clauses
Apply SLD Resolution
Unification is simple – absence of function symbols.

Definition (SLD Resolution Semantics)

Let SLDpPq denote the set of ground atoms, for which an SLD
refutation w.r.t. P exists.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Equivalence

Theorem
For all Datalog programs P, we can show
SLDpPq � Tω

P � MMpPq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Nonmonotonic Queries

Some simple queries cannot be written in positive Datalog.
Example: pπ1 Rq � S
This query is nonmonotone!
Adding tuples to S may retract result tuples.
Positive Datalog can express only monotone queries.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Model Theory
Fixpoint Theory
Proof Theory

Nonmonotonic Queries

In Relational Calculus pπ1 Rq � S is written using negation.
Introduce negation also for Datalog!
Problem: Negation through recursion?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Closed World Assumption

Atoms for which it is not necessary to be true should be
considered as false.
Only those items which are known should be true.
Example: Timetable
Reason for Minimal Model semantics!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Closed World Assumption

Definition
For a positive program P, CWApPq � tA | P �|ù Au.
Equivalently: CWApPq � HBpPq �MMpPq

Is this as simple if we allow rules with negative body literals?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs – Syntax

Definition
A normal rule is

h Ð b1, . . . ,bm,not bm�1, . . . ,not bn.
1 ¤ m ¤ n

Let
B�prq � tb1, . . . ,bmu
B�prq � tbm�1, . . . ,bmu
not.a � not a,not.not a � a
not.L � tnot.l | l P Lu
Bprq � B�prq Y not.B�prq
Hprq,V prq,Cprq as before

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Unsafe Queries

Recall: Using Negation it is easy to violate domain
independence!

Example

positivepX q Ð not zeropX q.

Definition (Safety)
Each variable in a rule must occur in a positive body atom.

Example

positivepX q Ð numberpX q,not zeropX q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Unsafe Queries

Recall: Using Negation it is easy to violate domain
independence!

Example

positivepX q Ð not zeropX q.

Definition (Safety)
Each variable in a rule must occur in a positive body atom.

Example

positivepX q Ð numberpX q,not zeropX q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs – Semantics

Most concepts do not change.
Satisfaction of a rule r with respect to M:
If B�prq � M and M X B�prq � H, then Hprq P M
Question: Minimal Model semantics suitable?

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

In general there is no unique minimal model.

Example

a Ð not b.

There are two models M1 � tau and M2 � tbu.
M2 is not very intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

In general there is no unique minimal model.

Example

a Ð not b.

There are two models M1 � tau and M2 � tbu.
M2 is not very intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

In general there is no unique minimal model.

Example

a Ð not b.

There are two models M1 � tau and M2 � tbu.
M2 is not very intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

Semantics of “negative recursion”?

personpnicolaq.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

tpersonpnicolaq,malepnicolaqu and
tpersonpnicolaq, femalepnicolaqu are minimal models

Both are equally intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

Semantics of “negative recursion”?

personpnicolaq.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

tpersonpnicolaq,malepnicolaqu and
tpersonpnicolaq, femalepnicolaqu are minimal models

Both are equally intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Normal Programs

Semantics of “negative recursion”?

personpnicolaq.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

tpersonpnicolaq,malepnicolaqu and
tpersonpnicolaq, femalepnicolaqu are minimal models

Both are equally intuitive.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Possibilities

1 Pragmatic: Do not allow “recursion through negation”.
2 Three-valued: Stay with a unique model, which may leave

some atoms undefined.
3 Two-valued: Abandon model uniqueness, stay with

standard models.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Dependency Graph

Definition
For a negative Datalog program P, we define a directed graph
pV ,Eq, where V are the predicate symbols of P, and pp,qq P E
if p is in the head and q is in the body of some rule. If q is in the
negative body, we mark the arc.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Example

a Ð b, c.
c Ð not b.
b Ð a

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Example

a Ð b, c.
c Ð not b.
b Ð a

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Stratification

Main idea: Partition the program along negation.

Definition
A stratification is a function λ, which maps predicate symbols to
integers such that for each rule with p being the head predicate
the following conditions hold:

1 For each predicate q in the positive body, λppq ¥ λpqq.
2 For each predicate r in the negative body, λppq ¡ λprq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Stratification

λ induces a partition xP0, . . . ,Pny of P (assuming that λ
maps to integers between 0 and n):

P0 � tr | λpHprqq � 0u
. . .
Pn � tr | λpHprqq � nu

λ defines a partial ordering between partitions.
We can evaluate the program along this ordering.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Stratifiable: λpaq � 0, λpbq � 0, λpcq � 1

Example

a Ð b, c.
c Ð not b.
b Ð a

Not stratifiable: λpcq ¡ λpbq ¥ λpaq ¥ λpcq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Stratifiable: λpaq � 0, λpbq � 0, λpcq � 1

Example

a Ð b, c.
c Ð not b.
b Ð a

Not stratifiable: λpcq ¡ λpbq ¥ λpaq ¥ λpcq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Stratifiable: λpaq � 0, λpbq � 0, λpcq � 1

Example

a Ð b, c.
c Ð not b.
b Ð a

Not stratifiable: λpcq ¡ λpbq ¥ λpaq ¥ λpcq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Examples

Example

a Ð b.
c Ð not b.
b Ð a

Stratifiable: λpaq � 0, λpbq � 0, λpcq � 1

Example

a Ð b, c.
c Ð not b.
b Ð a

Not stratifiable: λpcq ¡ λpbq ¥ λpaq ¥ λpcq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Stratification

Theorem
A program is stratifiable if and only if its dependency graph
contains no cycle with a marked (“negative”) edge.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Perfect Models

Stratification specifies an order for evaluation.
First fully compute the relations in the lowest stratum.
Then move one stratum up and evaluate the relations
there.
Negation is evaluated only over fully computed relations.
Can be treated like negation over EDB predicates.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Perfect Models and TP

Modify operator TP , as P may contain negation.

Definition

TPpIq � th |r P GroundpPq,B�prq � I,h P Hprq,
not.B�prq X I � Hu Y I

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Perfect Models and TP

Definition
Let xP0, . . . ,Pny be the partitions of a stratifiable program P,
induced by a stratification λ.
The sequence M0 � T8P0

pHq, M1 � T8P1
pM0q, . . .,

Mn � T8Pn
pMn�1q defines the Perfect Model Mn of P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Example – stratifiable

Easy case: Negation only on EDB predicates

Example

colorpyellow , k1q. colorpyellow , k2q. colorpblue, k3q.
colorpgreen, k4q. colorpred , k5q.

blockpK q Ð colorpF ,K q. blockpK q Ð formpF ,K q.
diffcolorpK 1,K 2q Ð

colorpF ,K 1q,blockpK 2q,not colorpF ,K 2q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Example – stratifiable

Example

formpbox , k1q. formpcone, k2q. formpdisc, k3q.
formpbox , k4q. formppyramid , k5q.

blockpK q Ð colorpF ,K q. blockpK q Ð formpF ,K q.
pointy_toppK q Ð blockpK q, formpcone,K q.
pointy_toppK q Ð blockpK q, formppyramid ,K q.
fits_onpK 1,K 2q Ð blockpK 1q,blockpK 2q,not pointy_toppK 2q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Example – stratifiable

Example

formpbox , k1q. formpcone, k2q. formpdisc, k3q.
formpbox , k4q. formppyramid , k5q.

blockpK q Ð colorpF ,K q. blockpK q Ð formpF ,K q.
flat_toppK q Ð blockpK q, formpbox ,K q.
flat_toppK q Ð blockpK q, formpdisc,K q.
pointy_toppK q Ð blockpK q,not flat_toppK q.
fits_onpK 1,K 2q Ð blockpK 1q,blockpK 2q,not pointy_toppK 2q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Example – unstratified

arcpa,bq. arcpb, cq. arcpb,dq.
nodepNq Ð arcpN,Y q. nodepNq Ð arcpX ,Nq.
blackpY q Ð arcpX ,Y q,not blackpX q.
whitepX q Ð nodepX q,not blackpX q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Example – unstratified

Dependency Graph:

arc node

neg
neg

black white

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Perfect Models

Note: Perfect Models are defined only on stratifiable
programs.

Theorem
For any stratifiable program, there exists a unique Perfect
Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Unstratifiable Programs

Example

personpnicolaq.
alivepX q Ð personpX q.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

Perfect Models are not defined.
But we would like to conclude at least alivepnicolaq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Unstratifiable Programs

Example

personpnicolaq.
alivepX q Ð personpX q.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

Perfect Models are not defined.
But we would like to conclude at least alivepnicolaq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Closed World Assumption
Stratifiable Programs

Unstratifiable Programs

Example

personpnicolaq.
alivepX q Ð personpX q.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

Perfect Models are not defined.
But we would like to conclude at least alivepnicolaq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Recursive Negation

Example

personpnicolaq.
alivepX q Ð personpX q.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Recursive Negation

Example
Using generalized TP :

TP pHq � tpersonpnicolaqu
TP pTP pHqq � tpersonpnicolaq, alivepnicolaq,malepnicolaq, femalepnicolaqu
TP pTP pTP pHqqq � tpersonpnicolaq, alivepnicolaqu
TP pTP pTP pTP pHqqqq � TP pTP pHqq
TP pTP pTP pTP pTP pHqqqqq � TP pHq
� � �

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Recursive Negation

Example
But there are two fixpoints:

TPptpersonpnicolaq,alivepnicolaq,malepnicolaquq �
tpersonpnicolaq,alivepnicolaq,malepnicolaqu

TPptpersonpnicolaq,alivepnicolaq, femalepnicolaquq �
tpersonpnicolaq,alivepnicolaq, femalepnicolaqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Recursive Negation

Two ways of resolving this:

1 Be cautious and do not say anything about malepnicolaq
and femalepnicolaq.

2 Consider two scenarios: One in which malepnicolaq is true,
another in which femalepnicolaq is true.

Problems to resolve:

1 needs another truth value undefined.
2 allows more than one model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Recursive Negation

Two ways of resolving this:

1 Be cautious and do not say anything about malepnicolaq
and femalepnicolaq.

2 Consider two scenarios: One in which malepnicolaq is true,
another in which femalepnicolaq is true.

Problems to resolve:

1 needs another truth value undefined.
2 allows more than one model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Three-valued Interpretations

Definition
A three-valued (or partial) interpretation I is a set of ground not
literals, such that for any ground atom a not both a P I and
nota P I.

Example

I � tnot a, cu

a is false in I
b is undefined in I
c is true in I

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Three-valued Interpretations

Definition
A three-valued (or partial) interpretation I is a set of ground not
literals, such that for any ground atom a not both a P I and
nota P I.

Example

I � tnot a, cu

a is false in I
b is undefined in I
c is true in I

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Three-valued Interpretations

Definition
A three-valued (or partial) interpretation I is a set of ground not
literals, such that for any ground atom a not both a P I and
nota P I.

Example

I � tnot a, cu

a is false in I
b is undefined in I
c is true in I

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a Ð not b.

b does not occur in any head, thus can never become true and
should be false. a should therefore be true.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a Ð b.
c Ð not a.

Given the interpretation tnot bu, a can never become true and
should be false. c should be true in this case.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets

Goal: Derive as much negative information as possible.

Example

a Ð b.
b Ð a.
c Ð not a.

a and b occur in some heads, but all bodies of these rules
require one of a or b to become true. Therefore a and b can
become true only via themselves and should be false, hence c
should be true.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets – Definition

Definition
A set U � HBpPq is unfounded with respect to a partial
interpretation I if the following holds:
For each a P U and each rule r P GroundpPq with Hprq � tau at
least one of the the following conditions holds:

1 D` P Bprq : not.` P I
2 B�prq X U � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets – Example

Example

a Ð not b.

For I � H, tbu is an unfounded set.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets – Example

Example

a Ð b.
c Ð not a.

For I � tnot bu, tau is an unfounded set.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Sets – Example

Example

a Ð b.
b Ð a.
c Ð not a.

For I � H, ta,bu is an unfounded set, because condition 2
holds for a Ð b. and b Ð a..

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Operator

Theorem
For any program P and partial interpretation I, the greatest
unfounded set GUSPpIq (which is a superset of all unfounded
sets) exists and is unique.

Idea: Use GUSPpIq to derive negative information.

Definition
Operator UPpIq � tnot.a | a P GUSPpIqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Unfounded Operator

Theorem
For any program P and partial interpretation I, the greatest
unfounded set GUSPpIq (which is a superset of all unfounded
sets) exists and is unique.

Idea: Use GUSPpIq to derive negative information.

Definition
Operator UPpIq � tnot.a | a P GUSPpIqu

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Operator

First generalize TPpIq for partial interpretations:

Definition
TPpIq :� th | r P GroundpPq,Bprq � I,h P Hprqu

Define the well-founded operator WPpIq as a combination of
TPpIq and UPpIq.

Definition
WPpIq � TPpIq Y UPpIq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Operator

First generalize TPpIq for partial interpretations:

Definition
TPpIq :� th | r P GroundpPq,Bprq � I,h P Hprqu

Define the well-founded operator WPpIq as a combination of
TPpIq and UPpIq.

Definition
WPpIq � TPpIq Y UPpIq

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model

Allen Van Gelder Kenneth Ross John Schlipf

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model

Theorem
WP is monotone and allows for a least fixpoint.

Definition
The least fixpoint W8

P pHq is the Well-Founded Model of a
normal program P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model

Theorem
WP is monotone and allows for a least fixpoint.

Definition
The least fixpoint W8

P pHq is the Well-Founded Model of a
normal program P.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model – Properties

Theorem
Each normal program has a unique Well-Founded Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model – Properties

Definition
A partial interpretation I is total if I Y not.I � HBpPq (each
ground atom is true or false).

Theorem
The Well-Founded Model for positive programs is total and
corresponds to its Minimal Model.

Theorem
The Well-Founded Model for stratifiable programs is total and
corresponds to its Perfect Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model – Properties

Definition
A partial interpretation I is total if I Y not.I � HBpPq (each
ground atom is true or false).

Theorem
The Well-Founded Model for positive programs is total and
corresponds to its Minimal Model.

Theorem
The Well-Founded Model for stratifiable programs is total and
corresponds to its Perfect Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Well-Founded Model – Example

Example

personpnicolaq.
alivepX q Ð personpX q.
malepX q Ð personpX q,not femalepX q.
femalepX q Ð personpX q,not malepX q.

The Well-Founded Model is tpersonpnicolaq,alivepnicolaqu and
it is not total.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Outline
1 Motivation and Basics

Relational Databases
Relational Model and Logic
Domain Independence

2 Datalog
Model Theory
Fixpoint Theory
Proof Theory

3 Datalog with Stratified Negation
Closed World Assumption
Stratifiable Programs

4 Datalog with Unstratified Negation
Recursion Through Negation
Well-founded Models
Stable Models

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

No longer a unique model.
Use total models.
Stability criterion instead of fixpoint semantics.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Michael Gelfond Vladimir Lifschitz

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Nicole Bidoit Christine Froidevaux

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Definition

The Gelfond-Lifschitz reduct of a program P I is defined as
follows, starting from GroundpPq:

1 Delete rules r , for which B�prq X I � H.
2 Delete the negative bodies of the remaining rules.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Gelfond-Lifschitz Reduct

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u
I2 � tmalepgqu, P I2 � tmalepgq.u
I3 � tfemalepgqu, P I3 � tfemalepgq.u
I4 � tmalepgq, femalepgqu, P I4 � H

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Fact
Gelfond-Lifschitz reducts are always positive, and have a
unique Minimal Model.

Definition

A total interpretation M is a Stable Model of P, if M � MMpPMq.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t malepgq Ð not femalepgq.
femalepgq Ð not malepgq.u

I1 � H, P I1 � tmalepgq. femalepgq.u , MMpP I1q � I1
I2 � tmalepgqu, P I2 � tmalepgq.u, MMpP I2q � I2
I2 is a stable model.
I3 � tfemalepgqu, P I3 � tfemalepgq.u, MMpP I3q � I3
I3 is a stable model.
I4 � tmalepgq. femalepgqu, P I4 � H, MMpP I4q � I4

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example

P � t weird Ð not weird .u

I1 � H, P I1 � tweird .u, MMpP I1q � I1
I2 � tweirdu, P I2 � H, MMpP I2q � I2
There is no stable model!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Theorem
For positive programs there is exactly one Stable Model, which
is equal to the Minimal Model.

Theorem
For stratifiable programs there is exactly one Stable Model,
which is equal to the Perfect Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Theorem
For positive programs there is exactly one Stable Model, which
is equal to the Minimal Model.

Theorem
For stratifiable programs there is exactly one Stable Model,
which is equal to the Perfect Model.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Theorem
If the Well-Founded Model of a program is total, then the
program has a corresponding unique Stable Model.

Theorem
The positive part of the Well-Founded Model of a program is
contained in each Stable Model of the program.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models

Theorem
If the Well-Founded Model of a program is total, then the
program has a corresponding unique Stable Model.

Theorem
The positive part of the Well-Founded Model of a program is
contained in each Stable Model of the program.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Consequences

Definition (Brave/Credulous Reasoning)

P |ùb l iff l is true in some Stable Model of P.

Definition (Cautious/Skeptical Reasoning)

P |ùc l iff l is true in all Stable Models of P.

Note: If P admits no Stable Model, then all literals are
cautious/skeptical consequences!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Consequences

Definition (Brave/Credulous Reasoning)

P |ùb l iff l is true in some Stable Model of P.

Definition (Cautious/Skeptical Reasoning)

P |ùc l iff l is true in all Stable Models of P.

Note: If P admits no Stable Model, then all literals are
cautious/skeptical consequences!

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Stable Models – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color?

vertexpV q Ð arcpV ,Y q. vertexpV q Ð arcpX ,V q.
colorpV ,whiteq Ð vertexpV q,not colorpV ,blackq.
colorpV ,blackq Ð vertexpV q,not colorpV ,whiteq.
bad Ð colorpV1,F q, colorpV2,F q,

arcpV1,V2q,not bad .

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Answer Set Programming

For several people Answer Set Programming is equal to
Datalog with negation under the stable model semantics!

For me and many others it is more, though.

Wolfgang Faber Answer Set Programming

Motivation and Basics
Datalog

Datalog with Stratified Negation
Datalog with Unstratified Negation

Recursion Through Negation
Well-founded Models
Stable Models

Answer Set Programming

For several people Answer Set Programming is equal to
Datalog with negation under the stable model semantics!

For me and many others it is more, though.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Part II

Answer Set Programming

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Answer Set Programming

A disjunctive rule is

h1 | . . . |hk Ð b1, . . . ,bm,not bm�1, . . . ,not bn.
1 ¤ k ; 1 ¤ m ¤ n

Let
Hprq � th1, . . . ,hku

everything else as before

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Disjunctive Programs – Semantics

Most concepts do not change.
Satisfaction of a rule r with respect to M:
If B�prq � M and M X B�prq � H, then Hprq � M
Reduct?

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Gelfond-Lifschitz Reduct

Definition

The Gelfond-Lifschitz reduct of a program P I is defined as
follows, starting from GroundpPq:

1 Delete rules r , for which B�prq X I � H.
2 Delete the negative bodies of the remaining rules.

Same as without disjunction!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models

Fact
Gelfond-Lifschitz reducts are always positive, and have multiple
Minimal Models.

Definition

A total interpretation M is a Stable Model of P, if M P MMpPMq.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color?

vertexpV q Ð arcpV ,Y q. vertexpV q Ð arcpX ,V q.
colorpV ,whiteq | colorpV ,blackq Ð vertexpV q.
bad Ð colorpV1,F q, colorpV2,F q,

arcpV1,V2q,not bad .

Note: No stable model will contain both colorpv ,whiteq and
colorpv ,blackq for any vertex v due to minimality!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color?

vertexpV q Ð arcpV ,Y q. vertexpV q Ð arcpX ,V q.
colorpV ,whiteq | colorpV ,blackq Ð vertexpV q.
bad Ð colorpV1,F q, colorpV2,F q,

arcpV1,V2q,not bad .

Can we always convert disjunctions to negations in this way
(shifting)?

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color?

vertexpV q Ð arcpV ,Y q. vertexpV q Ð arcpX ,V q.
colorpV ,whiteq Ð vertexpV q,not colorpV ,blackq.
colorpV ,blackq Ð vertexpV q,not colorpV ,whiteq.
bad Ð colorpV1,F q, colorpV2,F q,

arcpV1,V2q,not bad .

Can we always convert disjunctions to negations in this way
(shifting)?

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Shifting)

a |b.
a Ð b.
b Ð a.

One answer set: ta,bu

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Shifting)

a Ð not b.
b Ð not a.
a Ð b.
b Ð a.

No answer set! Why?

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Stable Models – Example

Example (Shifting)

a |b.
a Ð b.
b Ð a.

One answer set: ta,bu

There is a cycle among the disjunctive atoms!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Head-Cycle Free (HCF) Programs

Definition
P is head-cycle free (HCF) if there is a level mapping }.}h of P
such that for every rule r P P:

1 For any l P B�prq, and for any l 1 P Hprq, }l}h ¤ }l 1}h
2 For any l , l 1 P Hprq, }l}h <> }l 1}h

Theorem
Every head-cycle free program is equivalent to its
(non-disjunctive) shifted program.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Head-Cycle Free (HCF) Programs

Example (HCF Program)

a |b.
a Ð b.

is HCF since:
}a}h � 2; }b}h � 1

Example (Non-HCF Program)

a |b.
a Ð b.
b Ð a.

No HCF level mapping exists!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Integrity Constraints

An integrity constraint is

Ð b1, . . . ,bm,not bm�1, . . . ,not bn.

we view it as a shorthand for

bad Ð b1, . . . ,bm,not bm�1, . . . ,not bn,notbad .

where bad is a reserved predicate.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

True/Strong/Classical Negation

In place of atoms apt1, . . . , tnq one can use also strong literals
 apt1, . . . , tnq.
No answer set should contain both apt1, . . . , tnq and
 apt1, . . . , tnq of any kind.

Compile that away:

Replace any apt1, . . . , tnq by n_apt1, . . . , tnq (n_a a new
predicate)
AddÐ apX1, . . . ,Xnq,n_apX1, . . . ,Xnq. for each predicate a.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

True/Strong/Classical Negation

In place of atoms apt1, . . . , tnq one can use also strong literals
 apt1, . . . , tnq.
No answer set should contain both apt1, . . . , tnq and
 apt1, . . . , tnq of any kind.

Compile that away:

Replace any apt1, . . . , tnq by n_apt1, . . . , tnq (n_a a new
predicate)
AddÐ apX1, . . . ,Xnq,n_apX1, . . . ,Xnq. for each predicate a.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints

ø b1, . . . ,bm,not bm�1, . . . ,not bn.

Constraints that should be satisfied.

Non-satisfaction can incur a weight
possibly of a priority level

Produces an ordering of answer sets, identify answer sets.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints

ø b1, . . . ,bm,not bm�1, . . . ,not bn.rws

Constraints that should be satisfied.

Non-satisfaction can incur a weight
possibly of a priority level

Produces an ordering of answer sets, identify answer sets.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints

ø b1, . . . ,bm,not bm�1, . . . ,not bn.rw@ps

Constraints that should be satisfied.

Non-satisfaction can incur a weight
possibly of a priority level

Produces an ordering of answer sets, identify answer sets.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints

ø b1, . . . ,bm,not bm�1, . . . ,not bn.rw@ps

Constraints that should be satisfied.

Non-satisfaction can incur a weight
possibly of a priority level

Produces an ordering of answer sets, identify optimal answer
sets.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints

ø b1, . . . ,bm,not bm�1, . . . ,not bn.rw@ps

Constraints that should be satisfied.

Non-satisfaction can incur a weight
possibly of a priority level

Produces an ordering of answer sets, identify answer sets.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

Weak Constraints – Example

Example (Two-Colorability)
Given a graph, can each vertex be assigned one of two colors,
such that adjacent vertices do not have the same color,
preferring black?

vertexpV q Ð arcpV ,Y q. vertexpV q Ð arcpX ,V q.
colorpV ,whiteq | colorpV ,blackq Ð vertexpV q.
Ð colorpV1,F q, colorpV2,F q,arcpV1,V2q.
ø not colorpV ,blackq.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Combined and Data Complexity

ap0q.
ap1q.
bpX1, . . . ,Xnq Ð apX1q, . . . ,apXnq.

Consider data complexity, or equivalently variable-free
programs!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Combined and Data Complexity

ap0q.
ap1q.
bpX1, . . . ,Xnq Ð apX1q, . . . ,apXnq.

Consider data complexity, or equivalently variable-free
programs!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Intuitive explanation

Three main sources of complexity:
the exponential number of answer set “candidates”
checking whether a candidate M is an answer set of P
(minimality of M can be disproved by exponentially many
subsets of M)
checking optimality of the answer set w.r.t. the violation of
the weak constraints

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Complexity – Answer Set Checking

tu twu tnotsu tnots,wu tnotu tnot,wu

tu P P P P P co-NP

t |h u P co-NP P co-NP P co-NP

t | u co-NP ΠP
2 co-NP ΠP

2 co-NP ΠP
2

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Complexity – Brave Reasoning

tu twu tnotsu tnots,wu tnotu tnot,wu

tu P P P P NP ∆P
2

t |h u NP ∆P
2 NP ∆P

2 NP ∆P
2

t | u ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Complexity – Cautious Reasoning

tu twu tnotsu tnots,wu tnotu tnot,wu

tu P P P P co-NP ∆P
2

t |h u co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

t | u co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Expressivity?

What do we mean by expressivity or capturing?
Given a problem P in complexity class X , can we find an ASP
program ΠP such that for any input I encoded as facts ΠI , the
answer sets of ΠI Y ΠP are in a 1-1 correspondence to the
solutions of P on input I?
Except for classes without negation, the fragments of ASP
capture the classes for which they are complete.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Expressivity?

What do we mean by expressivity or capturing?
Given a problem P in complexity class X , can we find an ASP
program ΠP such that for any input I encoded as facts ΠI , the
answer sets of ΠI Y ΠP are in a 1-1 correspondence to the
solutions of P on input I?
Except for classes without negation, the fragments of ASP
capture the classes for which they are complete.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Complexity
Expressivity

Expressivity?

What do we mean by expressivity or capturing?
Given a problem P in complexity class X , can we find an ASP
program ΠP such that for any input I encoded as facts ΠI , the
answer sets of ΠI Y ΠP are in a 1-1 correspondence to the
solutions of P on input I?
Except for classes without negation, the fragments of ASP
capture the classes for which they are complete.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Aggregate Atom

Lg 1 f tSu 2 Ug

5 #counttEmpId : emppEmpId ,Male,Skill ,Salaryqu ¤ 10

The atom is true if the number of male employees is greater
than 5 and does not exceed 10.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Aggregate Example

Example (Team Building)
% An employee is either included in the team or not
inTeampIq | outTeampIq Ð emppI,Sx ,Sk ,Saq.

% The team consists of a certain number of employees
Ð nEmppNq,not #counttI : inTeampIqu � N.

% At least a given number of different skills must be present in the team
Ð nSkillpMq,not #counttSk : emppI,Sx ,Sk ,Saq, inTeampIqu ¤ M.

% The sum of the salaries of the employees working in the team must not
exceed the given budget
Ð budgetpBq,not #sumtSa, I : emppI,Sx ,Sk ,Saq, inTeampIqu ¤ B.

% The salary of each individual employee is within a specified limit
Ð maxSalpMq,not #maxtSa : emppI,Sx ,Sk ,Saq, inTeampIqu ¤ M.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Recursive Aggregates

Example

ap1q Ð #counttX : apX qu ¥ 1.

intuitively equivalent to

ap1q Ð ap1q.

One expected answer set: H
Treating aggregates like negative literals yields two answer
sets: H and tap1qu!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Recursive Aggregates

Example

ap1q Ð #counttX : apX qu ¥ 1.

intuitively equivalent to

ap1q Ð ap1q.

One expected answer set: H
Treating aggregates like negative literals yields two answer
sets: H and tap1qu!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Recursive Aggregates

Example

ap1q Ð #counttX : apX qu 1.

intuitively equivalent to

ap1q Ð not ap1q.

Expected answer sets: none
Treating aggregates like positive literals yields one answer set:
tap1qu!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Recursive Aggregates

Example

ap1q Ð #counttX : apX qu 1.

intuitively equivalent to

ap1q Ð not ap1q.

Expected answer sets: none
Treating aggregates like positive literals yields one answer set:
tap1qu!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Aggregate Semantics

The FLP Reduct (F., Leone, Pfeifer) of a ground program P
w.r.t. a set X is the positive ground program PX obtained from
P by:

deleting all rules with a false literal in the body (w.r.t. X);

Answer Set: An answer set of a program P is a set X � BP
such that X is a minimal model of PX .

Equivalent to Gelfond-Lifschitz reduct on aggregate-free
programs
Can be used for any “generalized atoms”: HEX atoms, DL
atoms etc.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Aggregate Semantics

The FLP Reduct (F., Leone, Pfeifer) of a ground program P
w.r.t. a set X is the positive ground program PX obtained from
P by:

deleting all rules with a false literal in the body (w.r.t. X);

Answer Set: An answer set of a program P is a set X � BP
such that X is a minimal model of PX .

Equivalent to Gelfond-Lifschitz reduct on aggregate-free
programs
Can be used for any “generalized atoms”: HEX atoms, DL
atoms etc.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Aggregate Semantics

The FLP Reduct (F., Leone, Pfeifer) of a ground program P
w.r.t. a set X is the positive ground program PX obtained from
P by:

deleting all rules with a false literal in the body (w.r.t. X);

Answer Set: An answer set of a program P is a set X � BP
such that X is a minimal model of PX .

Equivalent to Gelfond-Lifschitz reduct on aggregate-free
programs
Can be used for any “generalized atoms”: HEX atoms, DL
atoms etc.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

DL Atoms

DLrS1 Z p1,S2Y� p2,S3X� p3, . . . ; Qspt1, . . . , tnq

Evaluate DL query Q over a given ontology, adding
positive/negative assertions to concepts/roles:

S1, . . .: concepts/roles
p1, . . .: unary/binary predicates

Can be treated like “fancy” aggregates.
Satisfied in I iff

pT ,AYtS1puq | p1puq P Iu Y t S2puq | p2puq P Iu
Yt S3puq | p3puq R Iu Y . . . |ù Qpt1, . . . , tnq

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

DL Atoms

DLrS1 Z p1,S2Y� p2,S3X� p3, . . . ; Qspt1, . . . , tnq

Evaluate DL query Q over a given ontology, adding
positive/negative assertions to concepts/roles:

S1, . . .: concepts/roles
p1, . . .: unary/binary predicates

Can be treated like “fancy” aggregates.
Satisfied in I iff

pT ,AYtS1puq | p1puq P Iu Y t S2puq | p2puq P Iu
Yt S3puq | p3puq R Iu Y . . . |ù Qpt1, . . . , tnq

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

DL Atoms

DLrS1 Z p1,S2Y� p2,S3X� p3, . . . ; Qspt1, . . . , tnq

Evaluate DL query Q over a given ontology, adding
positive/negative assertions to concepts/roles:

S1, . . .: concepts/roles
p1, . . .: unary/binary predicates

Can be treated like “fancy” aggregates.
Satisfied in I iff

pT ,AYtS1puq | p1puq P Iu Y t S2puq | p2puq P Iu
Yt S3puq | p3puq R Iu Y . . . |ù Qpt1, . . . , tnq

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

More Semantics

Several more semantics have been proposed for generalized
programs:

Pelov; Son and Pontelli
Eiter et al. (strong and weak semantics)
Shen and colleagues
. . .

All reasonable ones coincide on standard programs and
programs with stratified general atoms.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Monotonicity

General atoms can be

Monotonic
truth in I implies truth in all J � I
Antimonotonic
truth in I implies truth in all J � I
Nonmonotonic
neither monotonic nor antimonotonic
Convex
truth in I and J � I implies truth in all K s.t. I � K � J

All reasonable semantics coincide on programs without
nonmonotonic general atoms.
Probably also on convex general atoms.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Monotonicity

General atoms can be

Monotonic
truth in I implies truth in all J � I
Antimonotonic
truth in I implies truth in all J � I
Nonmonotonic
neither monotonic nor antimonotonic
Convex
truth in I and J � I implies truth in all K s.t. I � K � J

All reasonable semantics coincide on programs without
nonmonotonic general atoms.
Probably also on convex general atoms.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Choice Rules

th1, . . . ,hku Ð b1, . . . ,bm,not bm�1, . . . ,not bn.

If the body is true, any subset of th1, . . . ,hku must be true.

lth1, . . . ,hkuu Ð b1, . . . ,bm,not bm�1, . . . ,not bn.

If the body is true, between l and u atoms of th1, . . . ,hku must
be true (inclusively).

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Aggregates and Generalized Atoms
Choice rules

Choice Rules

th1, . . . ,hku Ð b1, . . . ,bm,not bm�1, . . . ,not bn.

If the body is true, any subset of th1, . . . ,hku must be true.

lth1, . . . ,hkuu Ð b1, . . . ,bm,not bm�1, . . . ,not bn.

If the body is true, between l and u atoms of th1, . . . ,hku must
be true (inclusively).

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

ASP Computation

Computationally expensive
Traditionally a two-step process:

1 Instantiation (grounder)
Variable elimination

2 Propositional search (solver)
Model Generation: generate candidate answer sets
Model Checking: verify stability

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Equivalence

a |b. a Ð not b.
b Ð not a.

Equivalent, both programs have answer sets tau and tbu.

But the substitution theorem does not hold: the left extended
program has answer set ta,bu, the right one no answer set.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Equivalence

a |b. a Ð not b.
b Ð not a.

a Ð b. a Ð b.
b Ð a. b Ð a.

Equivalent, both programs have answer sets tau and tbu.

But the substitution theorem does not hold: the left extended
program has answer set ta,bu, the right one no answer set.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Strong Equivalence

Strong Equivalence: replaceability in any context (substitution
theorem holds)

Theorem
P and Q are strongly equivalent iff P �HT Q.

HT : Logic of Here and There, Heyting 1930
a.k.a. Gödel Logic G3

Answer Sets are actually HT models that satisfy an equilibrium
condition.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Strong Equivalence

Strong Equivalence: replaceability in any context (substitution
theorem holds)

Theorem
P and Q are strongly equivalent iff P �HT Q.

HT : Logic of Here and There, Heyting 1930
a.k.a. Gödel Logic G3

Answer Sets are actually HT models that satisfy an equilibrium
condition.

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

ASP Systems

DLV (grounder+solver)
wasp (solver)
gringo (grounder)
clasp (solver)
cmodels (solver)
lparse (grounder)
smodels (solver)
IDP (grounder+solver)
. . .

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Techniques

Deductive database techniques
Magic Sets
Techniques from SAT
Techniques from CSP

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Support

Development environments: e.g. ASPIDE
Application embedding: e.g. JASP
Debuggers
Visualizers

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Outline
5 Answer Set Programming

Disjunction
Integrity Constraints
Second Negation
Weak Constraints

6 Complexity and Expressivity
Complexity
Expressivity

7 Other Language Elements
Aggregates and Generalized Atoms
Choice rules

8 ASP in the Real World
Computation
Equivalences
Systems and Tools
Competition and StandardWolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

ASP Competition

Biannual
https://www.mat.unical.it/aspcomp2013/

System Track
Model & Solve Track

The System Track gave rise to the first serious language
standard.

https://www.mat.unical.it/aspcomp2013/ASPStandardization

Wolfgang Faber Answer Set Programming

https://www.mat.unical.it/aspcomp2013/

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Topics Not Covered

Of course incomplete...

ASP with function symbols
ASP with existential quantification in rule heads
ASP for arbitrary formulas
ASP without Unique Name Assumption
ASP and preferences
ASP and AI tasks
ASP applications

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Conclusions

ASP is Datalog with negation, disjunction etc. under the
stable model semantics
For the Web:

As a target to rewrite OBDA queries to
Loose coupling between ontologies and rules

Efficient systems
Development tools available

Try it!

Wolfgang Faber Answer Set Programming

Answer Set Programming
Complexity and Expressivity

Other Language Elements
ASP in the Real World

Computation
Equivalences
Systems and Tools
Competition and Standard

Further Resources

Nicola Leone and Francesco Ricca’s RR 2013 tutorial:
https://www.mat.unical.it/ricca/downloads/
rr2013-tutorial.pdf

Marin Gebser and Torsten Schaub’s IJCAI 2013 tutorial:
http://www.cs.uni-potsdam.de/~torsten/
ijcai13tutorial/

Wolfgang Faber Answer Set Programming

https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf
https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf
http://www.cs.uni-potsdam.de/~torsten/ijcai13tutorial/
http://www.cs.uni-potsdam.de/~torsten/ijcai13tutorial/

	From Datalog to Answer Set Programming
	Motivation and Basics
	Relational Databases
	Relational Model and Logic
	Domain Independence

	Datalog
	Model Theory
	Fixpoint Theory
	Proof Theory

	Datalog with Stratified Negation
	Closed World Assumption
	Stratifiable Programs

	Datalog with Unstratified Negation
	Recursion Through Negation
	Well-founded Models
	Stable Models

	Answer Set Programming
	Answer Set Programming
	Disjunction
	Integrity Constraints
	Second Negation
	Weak Constraints

	Complexity and Expressivity
	Complexity
	Expressivity

	Other Language Elements
	Aggregates and Generalized Atoms
	Choice rules

	ASP in the Real World
	Computation
	Equivalences
	Systems and Tools
	Competition and Standard

