Computational Complexity of Description Logics:

a Friendly Introduction to Some Interesting Phenomena

Uli Sattler

Warm up

Whic (1)	th of the following subsump r some (A and B) $\exists r.(A \sqcap B)$	tions hold? is subsumed by 	r some A $\exists r.A$
(2)	(r some A) and (r only B) $\exists r.A \sqcap \forall r.B$	is subsumed by □	r some B $\exists r.B$
(3)	r only (A and not A) $orall r.(A \sqcap \neg A)$	is subsumed by □	r only B $orall r.B$
(4)	r some (r only A) ∃ $r.(\forall r.A)$	is subsumed by □	r some (r some (A or not A)) $\exists r.(\exists r.(A \sqcup \neg A))$
(3)	r only (A and B) $\forall r.(A \sqcap B)$	is subsumed by □	(r only A) and (r only B) $\forall r.A \sqcap \forall r.B$
(4)	r some B ∃r.B	is subsumed by	r only B $orall r.A$

- we will discuss a lot of things
- but also leave out a lot
- ...please ask if you have a question!

Given an ontology $\mathcal{O} = (\mathcal{T}, \mathcal{A})$, • is *O* consistent? $\mathcal{O} \models \top \Box \perp$? • is *O* coherent? is there concept name A with $\mathcal{O} \models A \sqsubset \bot$? for all concept names $A, B: \mathcal{O} \models A \sqsubset B$? • compute concept hierarchy! • classify individuals! for all concept names A, individual names b: $\mathcal{O} \models b \colon B$? **Theorem 1** Let \mathcal{O} be an ontology and a an individual name **not** in \mathcal{O} . Then 1. C is satisfiable w.r.t. \mathcal{O} iff $\mathcal{O} \cup \{a : C\}$ is consistent 2. \mathcal{O} is coherent iff, for each concept name A, $\mathcal{O} \cup \{a \colon A\}$ is consistent 3. $\mathcal{O} \models A \sqsubseteq B$ iff $\mathcal{O} \cup \{a \colon (A \sqcap \neg B)\}$ is not consistent 4. $\mathcal{O} \models b \colon B$ iff $\mathcal{O} \cup \{b \colon \neg B\}$ is not consistent

► a decision procedure for consistency decides all standard DL reasoning problems

- ullet A problem is a set $P\subseteq M$
 - e.g., M is the set of all \mathcal{ALC} ontologies,
 - $-P\subseteq M$ is the set of all consistent \mathcal{ALC} ontologies
 - ...and the problem P is to decide whether, for a given $m \in M$, we have $m \in P$
- An algorithm is a decision procedure for a problem $P \subseteq M$ if it is
 - sound for P: if it answers " $m \in P$ ", then $m \in P$
 - complete for P: if $m \in P$, then it answers " $m \in P$ "
 - -terminating: it stops after finitely many steps on any input $m \in M$

Why does "sound and complete" not suffice for being a decision procedure?

Earlier: Anni explained a tableau algorithm for \mathcal{ALC}

Input: ALC TBox T, ALC concept name COutput: "yes" if C is satisfiable wrt. T"no" if not

Is this algorithm

- sound?
- complete?
- terminating?
- ...and how long does it run?

Lemma 1: Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be an \mathcal{ALC} ontology in NNF. Then

- 1. the algorithm terminates when applied to ${\mathcal T}$ and C
- 2. if the rules generate a complete & clash-free ABox, then C is satisfiable wrt. ${\mathcal T}$
- 3. if C is satisfiable wrt. T, then the rules generate a clash-free & complete ABox

Corollary 1:

- 1. Our tableau algorithm decides satisfiability of \mathcal{ALC} concepts wrt. TBoxes.
- 2. Satisfiability of *ALC* concepts (no TBox!) is decidable in **PSpace**.
- 3. Satisfiability of \mathcal{ALC} concepts wrt. TBoxes is decidable in ExpSpace.
- 4. *ALC* concepts have the finite model property i.e., every consistent ontology has a finite model.
- 5. \mathcal{ALC} concepts have the tree model property
 - i.e., every consistent ontology has a tree model.

Regarding Corollary 1.2

```
If we start the algorithm with \{a : C\}
to test satisfiability of C, and
construct ABox in non-deterministic depth-first manner
rather than constructing set of ABoxes
so that we only consider a single ABox and
re-use space for branches already visited,
mark b : \exists R.C \in \mathcal{A} with "todo" or "done"
```

we can run tableau algorithm (even without blocking) in polynomial space:

- \bullet ABox is of depth bounded by |C| , and
- we keep only a single branch in memory at any time.

If we start the algorithm withwith $\{a: C\}$ and \mathcal{T} to test satisfiability of C wrt. \mathcal{T} , and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox

we can run tableau algorithm in exponential space:

• number of individuals in ABox is bounded by $2^{\#\operatorname{\mathsf{sub}}(\mathcal{T})}$

This is not optimal: consistency of ALC ontologies is decidable in exponential time, in fact ExpTime-complete.

The tableau algorithm presented here

- \rightarrow decides consistency of \mathcal{ALC} ontologies, and thus also
- \rightarrow all other standard reasoning problems
- → uses blocking to ensure termination, and
- → can be implemented as such or using a non-deterministic alternative for the *□*-rule and backtracking.
- → uses P/Exp-Space
- \rightarrow can be implemented in various ways,
 - order/priorities of rules
 - data structure
 - etc.
- \rightarrow is amenable to optimisations...

Naive implementation of \mathcal{ALC} tableau algorithm is doomed to failure:

It constructs a

- set of ABoxes,
- each ABox being of possibly exponential size, with possibly exponentially many individuals (see binary counting example)
- in the presence of a GCI such as $\top \sqsubseteq (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)$ and exponentially many individuals, algorithm might generate double exponentially many ABoxes
- \rightsquigarrow requires double exponential space or
 - use non-deterministic variant and backtracking to consider one ABox at a time
- \leadsto requires exponential space

Optimisations are crucial

concern every aspect of the algorithm help in "many" cases (which?) are implemented in various DL reasoners e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations

Reasoners provides service "classify all concept names in \mathcal{T} ", i.e., for all concept names C, D in \mathcal{T} , reasoner decides does $\mathcal{T} \models C \sqsubseteq D$? \rightsquigarrow test consistency of $\mathcal{T} \cup \{a \colon (C \sqcap \neg D)\}$ $\rightsquigarrow n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

 Reasoners provides service "classify all concept names \mathcal{T} ", i.e., for all concept names C, D in \mathcal{T} , reasoner decides does $\mathcal{T} \models C \sqsubseteq D$? \rightsquigarrow test consistency of $\mathcal{T} \cup \{a \colon (C \sqcap \neg D)\}$ $\rightsquigarrow n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Reasoners provides service "classify all concept names \mathcal{T} ", i.e., for all concept names C, D in \mathcal{T} , reasoner decides does $\mathcal{T} \models C \sqsubseteq D$? \rightsquigarrow test consistency of $\mathcal{T} \cup \{a \colon (C \sqcap \neg D)\}$ $\rightsquigarrow n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Reasoners provides service "classify all concept names \mathcal{T} ", i.e., for all concept names C, D in \mathcal{T} , reasoner decides does $\mathcal{T} \models C \sqsubseteq D$? \rightsquigarrow test consistency of $\mathcal{T} \cup \{a \colon (C \sqcap \neg D)\}$ $\rightsquigarrow n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

- Idea 2: maintain graph with a node for each concept name
 - edges representing subsumption, disjointness ($\mathcal{T} \models A \sqsubseteq \neg B$), and non-subsumption
 - \bullet initialise graph with all "obvious" information in ${\boldsymbol{\mathcal{T}}}$
 - to avoid testing subsumption, exploit
 - all info in ABox during tableau algorithm to update graph
 - transitivity of subsumption and its interaction with disjointness

Remember: for $\mathcal{T} = \{C_i \sqsubset D_i \mid 1 \le i \le n\}$, each individual x will have n disjunctions $x : (\neg C_i \sqcup D_i)$ due to $ext{if} \quad \mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$ **GCI**-rule: replace \mathcal{A} with $\mathcal{A} \cup \{a : (\neg C_1 \sqcup D_1) \sqcap (\neg C_2 \sqcup D_2) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)\}$ **Problem:** high degree of choice and huge search space blows up set of ABoxes...we can do better: if $C \sqsubseteq D \in \mathcal{T}$, *a* is not blocked, and 2GCI-rule: if C is a concept name, $a: C \in \mathcal{A}$ but $a: D \not\in \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$ else if $a : (\neg C \sqcup D) \not\in \mathcal{A}$ for a in \mathcal{A} , replace \mathcal{A} with $\mathcal{A} \cup \{a : (\neg C \sqcup D)\}$

Problem: still possibly high degree of choice and huge search space...

Observation:many GCIs are of the form $A \sqcap \ldots \sqsubseteq C$ for concept name Ae.g., Human $\sqcap \ldots \sqsubseteq C$ or Device $\sqcap \ldots \sqsubseteq C$ Idea:localise GCIs to concept names by transforming

 $A \sqcap X \sqsubseteq C$ into equivalent $A \sqsubseteq \neg X \sqcup C$

e.g., Human $\sqcap \exists owns.Pet \sqsubseteq C becomes Human \sqsubseteq \neg \exists owns.Pet \sqcup C$

For "absorbed" $\mathcal{T} = \{A_i \sqsubseteq D_i \mid 1 \leq i \leq n_1\} \cup \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n_2\}$ the second, non-deterministic choice in GCI-rule is taken only n_2 times.

2GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, a is not blocked, and if C is a concept name, $a : C \in \mathcal{A}$ but $a : D \not\in \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$ else if $a : (\neg C \sqcup D) \notin \mathcal{A}$ for a in \mathcal{A} , replace \mathcal{A} with $\mathcal{A} \cup \{a : (\neg C \sqcup D)\}$ **Observation:** many GCIs are of the form $A \sqcap \ldots \sqsubseteq C$ for concept name A

e.g., Human $\sqcap \ldots \sqsubseteq C$ or Device $\sqcap \ldots \sqsubseteq C$

Idea: Iocalise GCIs to concept names by transforming

 $A \sqcap X \sqsubseteq C$ into equivalent $A \sqsubseteq \neg X \sqcup C$

e.g., Human $\sqcap \exists owns.Pet \sqsubseteq C \text{ becomes Human } \sqsubseteq \neg \exists owns.Pet \sqcup C$

Observations:If no GCI is absorbable, nothing changesEach absorption saves 1 disjunction per individual outside A_i ,in the best case, this avoids almost all disjunctions from TBox axioms!

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the ALC Tableau Algorithm: SAT Optimisations

Finally: ALC extends propositional logic ~→ heuristics developed for SAT are relevant

Summing up:optimisations are possible at each aspect of tableau algorithmcan dramatically enhance performance~> do they interact?~> how?~> which combination works best for which "cases"?~> is the optimised algorithm still correct?... check out ORE 2013 results & our "Robustness" paper at DL 2013

...now for some proper computational complexity...

We have seen 1 algorithm that runs

- in PSpace without a TBox
- in non-deterministic ExpSpace with a TBox

...can we do better? How can we tell? ...perhaps try much harder, think much longer? ...how do we show that our algorithm is **optimal**? And what does that mean anyway? ~> look at **complexity**...

We distinguish between

• cognitive complexity:

- e.g., how hard is it, for a human, to determine/understand $\mathcal{O} \models^? C \sqsubseteq D$
- interesting, little understood topic
- relevant to provide tool support for ontology engineers
- computational complexity:
 - e.g., how much time/space do we need to determine $\mathcal{O} \models^? C \sqsubseteq D$
 - well understood topic
 - loads of results thanks to relationships DL FOL Modal Logic
 - relevant to understand
 - * trade-off between expressivity (of a DL) and complexity of reasoning
 - * whether a given algorithm is optimal/can be improved

Computational Complexity: Decision Problems

Decision problem:	$ullet$ is a subset $P\subseteq M$				
	• e.g., P = the set of consistent \mathcal{ALC} ontologies and M = the set of all \mathcal{ALC} ontologies				
 think of it as black box with 					
$-\operatorname{input} m\in M$					
-output "yes" if $m\in P$					
"no" if $m ot\in P$					
(Polynomial) reduction from $P\subseteq M$ to $P'\subseteq M'$ is a (polynomial) function π :					
$ullet \pi: M \longrightarrow M'$					
	$ullet m \in P$ iff $\pi(m) \in P'$				
	$ullet$ e.g., our translation $t()$ from \mathcal{ALC} to FOL				
	• e.g., our reduction from subsumption to ontology consistency				

Computational Complexity: Decision Problems

Decision problem:	$ullet$ is a subset $P\subseteq M$	
 think of it as black box with 		
$-\operatorname{input}m\in M$		
-output: "yes" if $m \in P$, "no" otherwise		
(Polynomial) reduct	tion from $P \subseteq M$ to $P' \subseteq M'$ is a (polynomial) function π :	
	$ullet \pi: M \longrightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$	

Computational Complexity: Decision Problems

Decision problem:	$ullet$ is a subset $P\subseteq M$
 think of it as black box with 	
	$-\operatorname{input} m\in M$ $-\operatorname{output:}$ "yes" if $m\in P$, "no" otherwise
(Polynomial) reduc	tion from $P\subseteq M$ to $P'\subseteq M'$ is a (polynomial) function π :
	$ullet \pi: M \longrightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$

Fact: if $P \subseteq M$ is reducible to $P' \subseteq M'$, then *P* is at most as hard/complex^{*a*} as *P'* because *P* can be solved by solving *P'* via π

^aOf course only for suitably complex problems.

Some standard complexity classes:

Name	Meaning	Examples
L	logarithmic space	graph accessibility
Р	polynomial time	model checking
NP	nondeterministic pol. time	prop. logic SAT
PSpace	polynomial space	Q-SAT
ExpTime	exponential time	
NExpTime	nondeterministic exponential time	
ExpSpace	exponential space	
•••	• • •	
	undecidable	FOL-SAT

To determine that a problem $P\subseteq M$ is

- \bullet in a complexity class ${\cal C},$ it suffices to
 - design/find an algorithm
 - show that it is sound, complete, and terminating, and
 - show that this algorithm runs, for every $m \in M$, in at most ${\mathcal C}$ resources
 - $\, ... this algorithm can be a reduction to a problem known to be in <math display="inline">{\boldsymbol {\cal C}}$
- \bullet hard for a complexity class ${\cal C},$ we need to
 - find a suitable problem $P' \subseteq M'$ that is known to be hard for $\mathcal C$ and
 - a reduction $\pi(.)$ from P' to P
- \bullet complete for a complexity class $\mathcal C,$ we need to show that it is
 - $-\operatorname{in} \mathcal{C}$ and
 - $\, \text{hard} \, \, \text{for} \, \, \mathcal{C}$

- We have seen that *ALC* concept satisfiability (no TBox) is in **PSpace**:
 - non-deterministic tableau algorithm runs in polynomial space
 - can be extended to ABoxes
- ✓ we can't do better: *ALC* satisfiability is **PSpace-hard**:
 - but proof is a bit cumbersome
 - via a reduction of satisfiability of quantified Boolean formulae
- We have seen that *ALC* concept satisfiability w.r.t. TBoxes is in NExpSpace:
 - non-deterministic tableau algorithm runs in exponential space
 - can be extended to ABoxes & ontology consistency
 - can be extended to $\mathcal{ALCQI}, \, \mathcal{ALCQO}, \, \text{and} \, \, \mathcal{ALCIO}$
- ✓ we can do better: *ALC* satisfiability wrt. TBoxes is **ExpTime-complete**:
 - but such (optimal) algorithm takes too long for this course
 - as is lower bound/hardness proof

(via a reduction of the halting problem of polynomial-space-bounded alternating TMs)

Understanding lower bounds/hardness of problems

- tell us when "in principle" improvement of algorithms is futile
- inform us of relationships of logics:
 - who is harder than who?
 - which are of similar difficulty?
- their proofs often
 - reveal interesting model theoretic properties:
 - * tree model property: each satisfiable input has a tree-shaped model
 - * finite model property: each satisfiable input has a finite model
 - use interesting translations between logics

They don't always tell us much about "typical" performance...

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

Earlier, we have claimed that, for \mathcal{ALC} ,

- concept satisfiability is in PSpace, but
- concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for ALC^{u} , the extension of ALC with

ullet universal role u with $u^{\mathcal{I}} = \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$

- ⇒ concept satisfiability is as hard as reasoning w.r.t. a TBox, namely ExpTime-hard
 - this is typical phenomenon where the
 - certain constructors enable us to internalise a TBox

Remember: for $\mathcal{T} = \{C_1 \sqsubseteq D_1, \dots, C_n \sqsubseteq D_n\}$, we use $C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap \dots \sqcap (\neg C_n \sqcup D_n)$

for the universal \mathcal{T} concept that has to hold everywhere

Reduction: for C a concept and \mathcal{T} a TBox, define

 $\pi(C,\mathcal{T})=C\sqcaporall u.C_{\mathcal{T}}$

Lemma: 1. *C* is satisfiable w.r.t. \mathcal{T} iff the concept $\pi(C, \mathcal{T})$ is satisfiable 2. the size of $\pi(C, \mathcal{T})$ is linear in that of *C* plus \mathcal{T}

Corollary: satisfiability of ALC^{u} concepts is as hard as satisfiability of ALC concepts w.r.t. TBoxes is, namely ExpTime-hard

Let's do that again!

Earlier, we have claimed that, for \mathcal{ALC} ,

- concept satisfiability is in PSpace, but
- concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for ALCIO, the extension of ALC with

- ullet inverse roles r^- with $(r^-)^\mathcal{I}=\{(y,x)\mid (x,y)\in r^\mathcal{I}\}$ and
- nominals, i.e., individual names used as concept names
- ⇒ concept satisfiability is as hard as reasoning w.r.t. a TBox, namely ExpTime-hard
 - this is typical phenomenon where the

- combination of certain constructors enables us to internalise a TBox

Remember: for
$$\mathcal{T} = \{C_1 \sqsubseteq D_1, \dots, C_n \sqsubseteq D_n\}$$
, we use
 $C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap \dots \sqcap (\neg C_n \sqcup D_n)$

for the universal \mathcal{T} concept that has to hold everywhere

Reduction: for *C* a concept and *T* a TBox, define $\pi(C, \mathcal{T}) = C \sqcap C_{\mathcal{T}} \sqcap \exists p. (\{o\} \sqcap \forall p^{-}.(\sqcap \forall r.(\exists p.\{o\} \sqcap C_{\mathcal{T}}))$

Lemma: 1. *C* is satisfiable w.r.t. \mathcal{T} iff the concept $\pi(C, \mathcal{T})$ is satisfiable 2. the size of $\pi(C, \mathcal{T})$ is linear in that of *C* plus \mathcal{T}

Corollary:satisfiability of ALCIO concepts is as hard assatisfiability of ALCIO concepts w.r.t. TBoxes, namely ExpTime-hard

Earlier, we have claimed that ALCQI, ALCQO, and ALCIO are all **ExpTime**-complete, i.e., as hard/easy as ALC

Next, we will see that consistency of \mathcal{ALCQIO} ontologies, the extension of \mathcal{ALC} with

ullet inverse roles r^- with $(r^-)^\mathcal{I} = \{(y,x) \mid (x,y) \in r^\mathcal{I}\}$

• number restrictions, in fact functionality restrictions $(\leq 1r op)$ and

• nominals, i.e., individual names used as concept names

 \Rightarrow is harder, namely NExpTime-hard

• this is typical phenomenon where

 combination of otherwise harmless constructors leads to increased complexity We follow our hardness proof recipe:

- to show that consistency of \mathcal{ALCQIO} ontologies is NExpTime-hard, we
 - find a suitable problem $P' \subseteq M'$ that is known to be NExpTime-hard and
 - a reduction from P' to \mathcal{ALCQIO} consistency

The NExpTime version of the domino problem

- ullet set of domino types $D=\{D_1,\ldots,D_d\}$, and
- horizontal and vertical matching conditions $H \subset D \times D$ and $V \subset D \times D$

A tiling for \mathcal{D} is a function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ & \langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ & \langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

Domino problems: classical given \mathcal{D} , does \mathcal{D} have a tiling?

 \Rightarrow well-known that this problem is undecidable [Berger66]

NexpTime given \mathcal{D} , does \mathcal{D} have a tiling for $2^n \times 2^n$ square? \Rightarrow well-known that this problem is NExpTime-hard To reduce the NExpTime domino problem to \mathcal{ALCQIO} consistency, we need to

• define a mapping $\pi(.)$ from domino problems to \mathcal{ALCQIO} ontologies such that

D has an $2^n\times 2^n$ mapping iff $\pi(D)$ is consistent and size of $\pi(D)$ is polynomial in n

Elements in models of $\pi(D)$ will stand for points in the grid, i.e., (m, n)...

We can express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

(1) each element carries exactly one domino type D_i

 \rightsquigarrow use concept name D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $\begin{array}{c} D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d & \% \text{ but not more than one} \\ D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d & \% & \ldots \\ \vdots & \vdots \\ D_{d-1} \sqsubseteq \neg D_d \end{array}$

② every element has a horizontal (X-) successor and a vertical (Y-) successor $\top \Box \exists X. \top \sqcap \exists Y. \top$

③ every element satisfies D's horizontal/vertical matching conditions:

Does this suffice? I.e., does D have a $2^n \times 2^n$ tiling iff one D_i is satisfiable w.r.t. ① to ③?

- \bullet if yes, we have shown that satisfiability of \mathcal{ALC} is NExpTime-hard
- so no...what is missing?

Two things are missing:

- 1. the model must be large enough, namely $2^n imes 2^n$ and
- 2. for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

This will be addressed using a "counting and binding together" trick ...

4 counting and binding together

(a) use A_1, \ldots, A_n , B_1, \ldots, B_n as "bits" for binary representation of grid position e.g., (010, 011) is represented by an instance of $\neg A_3, A_2, \neg A_1, \neg B_3, B_2, B_1$

write GCI to ensure that X- and Y-successors are incremented correctly e.g., X-successor of (010, 011) is (011, 011) e.g., Y-successor of (010, 011) is (010, 100)

(b) use a nominal to ensure that there is only one (111...1, 111...1) this implies, with $\top \sqsubseteq (\leq 1 \ X^-.\top) \sqcap (\leq 1 \ Y^-.\top)$ uniqueness of grid positions

4 counting and binding together

(a) \tilde{A}_i for "bit A_i is incremented correctly":

$$\begin{array}{l} \top \sqsubseteq \tilde{A}_{1} \sqcap \ldots \sqcap \tilde{A}_{n} \\ \tilde{A}_{1} \sqsubseteq (A_{1} \sqcap \forall X. \neg A_{1}) \sqcup (\neg A_{1} \sqcap \forall X. A_{1}) \\ \tilde{A}_{i} \sqsubseteq (\prod_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. \neg A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. A_{i})) \sqcup (\neg A_{i} \sqcap \forall X. A_{i})) \sqcup (\neg \prod_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. \neg A_{i})) \\ \end{array}$$
(add the same for the B_{i} s)

(b) ensure uniqueness of grid positions:

 $A_1 \sqcap \ldots \sqcap A_n \sqcap B_1 \sqcap \ldots \sqcap B_n \sqsubseteq \{o\}$ % top right $(2^n, 2^n)$ is unique $\top \sqsubseteq (\leq 1 X^-.\top) \sqcap (\leq 1 Y^-.\top)$ % everything else is also unique

Reduction of NExpTime Domino Problem to ALCQIO Consistency

Lemma: let $\pi(D)$ be ontology consisting of all axioms mentioned in 1-4:

- D has an $2^n imes 2^n$ tiling iff $\pi(D)$ is consistent
- ullet size of $\pi(D)$ is polynomial (quadratic) in
 - the size of \boldsymbol{D} and

-n

Since the NExpTime-domino problem is NExpTime-hard, this implies consistency of ALCQTO is also NExpTime-hard: if we could solve consistency of ALCQTO in, say, ExpTime,

this would allow us to solve the domino problem also in ExpTime via $\pi(.)$

Let's do this again!

So far, we have extended \mathcal{ALC} with

- inverse role and
- number restrictions
- ...which resulted in logics whose reasoning problems are decidable
- ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

- \bullet \mathcal{ALC} with role chain inclusions
- \bullet \mathcal{ALC} with number restrictions on complex roles

OWL 2 supports axioms of the form

- $r \sqsubseteq s$: a model of $\mathcal O$ with $r \sqsubseteq s \in \mathcal O$ must satisfy $r^\mathcal I \subseteq s^\mathcal I$
- trans(r): a model of \mathcal{O} with trans $(r) \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$, where $p \circ q = \{(x, z) \mid \text{ there is } y : (x, y) \in p \text{ and } (y, z) \in q\}$, i.e., a model \mathcal{I} of \mathcal{O} must interpret r as a transitive relation
- $r \circ s \sqsubseteq t$: a model of \mathcal{O} with $r \circ s \sqsubseteq t \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}}$

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and undecidability

Similar to hardness results, we prove undecidability of a DL as follows:

- 1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox
 - remember Theorem 1?
 - if concept satisfiability w.r.t. TBox is undecidable,
 - then so is consistency of ontology
 - then so is subsumption w.r.t. TBox
 - ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

- 3. provide a (computable) mapping $\pi(\cdot)$ that
 - \bullet takes an instance \boldsymbol{D} of the domino problem and
 - ullet turns it into a concept A_D and a TBox \mathcal{T}_D such that
 - ullet D has a tiling if and only if A_D is satisfiable w.r.t. \mathcal{T}_D

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as a decision procedure for the domino problem

The Classical Domino Problem

Definition: A domino system $\mathcal{D} = (D, H, V)$

- ullet set of domino types $D = \{D_1, \dots, D_d\}$, and
- horizontal and vertical matching conditions $H \subseteq D imes D$ and $V \subseteq D imes D$

A tiling for \mathcal{D} is a (total) function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ & \langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ & \langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

Domino problem: given \mathcal{D} , has \mathcal{D} a tiling?

It is well-known that this problem is undecidable [Berger66]

We have already see how to express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

(1) each element carries exactly one domino type $D_i \checkmark$

 \rightsquigarrow use unary predicate symbol D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $\begin{array}{c} D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d & \% \text{ but not more than one} \\ D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d & \% & \ldots \\ \vdots & \vdots \\ D_{d-1} \sqsubseteq \neg D_d \end{array}$

② every element has a horizontal (*X*-) successor and a vertical (*Y*-) successor \checkmark $\top \Box \exists X. \top \sqcap \exists Y. \top$

(3) every element satisfies D's horizontal/vertical matching conditions: \checkmark

Does this suffice?

No, we know that it doesn't!

Encoding the Classical Domino Problem in \mathcal{ALC} with role chain inclusions

(4) for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors & vice versa

 $X \circ Y \sqsubseteq Y \circ X$ and $Y \circ X \sqsubseteq X \circ Y$

Lemma: Let \mathcal{T}_D be the axioms from ① to ④. Then \top is satisfiable w.r.t. \mathcal{T}_D iff \mathcal{D} has a tiling.

- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions
- due to Theorem 1, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for *D*, you can construct a model of *T_D*2. show that, from a model *I* of *T_D*, you can construct a tiling for *D* (tricky because elements in *I* can have several *X* or *Y*-successors

Let's do this again!

What other constructors can us help to express obligation ④?

• counting and complex roles (role chains and role intersection):

 $\top \sqsubseteq (\leq 1X.\top) \sqcap (\leq 1Y.\top) \sqcap (\exists (X \circ Y) \sqcap (Y \circ X).\top)$

• restricted role chain inclusions (only 1 role on RHS), and counting on non-simple roles:

• various others...

Thanks to **Thomas Schneider**, University of Bremen: he made the originals of these slides, which I borrowed and slightly modified

Are all DLs intractable?

3 A simple poly-time reasoning algorithm

And now ...

2 Normalisation

3 A simple poly-time reasoning algorithm

Summary

 $\mathcal{E\!L}$ is a restriction of $\mathcal{A\!L\!C}$ that \ldots

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for deciding subsumption etc.

Summary

 $\mathcal{E\!L}$ is a restriction of $\mathcal{A\!L\!C}$ that \ldots

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for deciding subsumption etc.

• can be extended to \mathcal{EL}^{++} with other features, without increase in complexity:

 ⊥
 d

 disjoint concepts
 c

 role (chain) inclusions
 n

 transitive roles, reflexive roles
 c

domain and range restrictions concept and role assertions nominals concrete domains

Summary

 $\mathcal{E\!L}$ is a restriction of $\mathcal{A\!L\!C}$ that \ldots

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for deciding subsumption etc.

• can be extended to \mathcal{EL}^{++} with other features, without increase in complexity:

\perp	domain and range restrictions
disjoint concepts	concept and role assertions
role (chain) inclusions	nominals
transitive roles, reflexive roles	concrete domains

 \bullet whose extension with inverse roles or counting increases complexity to that of \mathcal{ALC}

Syntax and semantics of $\mathcal{E\!L}$

Concepts

For C, D concepts and R a role name:

Constructor	Syntax	Example	Semantics
top	Т		$\Delta^{\mathcal{I}}$
conjunction	C⊓D	Human □ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
exist. restr.	$\exists r.C$	∃hasChild.Human	$\{x \mid \exists y.(x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$

Axioms

- $C \sqsubseteq D$
- $C \equiv D$ as a shortcut for " $C \sqsubseteq D$, $D \sqsubseteq C$ "
What a tiny logic !?

 \checkmark We can say in \mathcal{EL}

 $\mathsf{Hand}\ \sqsubseteq\ \exists\ \mathsf{hasPart}.\mathsf{Finger}$

X but we can't say

Hand $\sqsubseteq = 5$ hasPart.Finger Finger $\sqsubseteq \exists$ hasPart⁻.Hand

What a tiny logic !?

✓ We can say in \mathcal{EL}

 $\mathsf{Hand}\ \sqsubseteq\ \exists\ \mathsf{hasPart}.\mathsf{Finger}$

X We'd like to say, but can't

X but we can't say

Hand $\sqsubseteq = 5$ hasPart.Finger Finger $\sqsubseteq \exists$ hasPart⁻.Hand

✓ all we can say (in \mathcal{EL}^{++}) is MildFlu \sqsubseteq Flu Cough \sqsubseteq Triv, Sneeze \sqsubseteq Triv, ... MildFlu \sqcap ∃ symptom.Fever \sqsubseteq \bot

What a tiny logic !?

✓ We can say in \mathcal{EL}

Hand $\sqsubseteq \exists hasPart.Finger$

X but we can't say

Hand $\sqsubseteq = 5$ hasPart.Finger Finger $\sqsubseteq \exists$ hasPart⁻.Hand

X We'd like to say, but can't

✓ all we can say (in \mathcal{EL}^{++}) is MildFlu \sqsubseteq Flu Cough \sqsubseteq Triv, Sneeze \sqsubseteq Triv, ... MildFlu \sqcap ∃ symptom.Fever \sqsubseteq \bot

\mathcal{EL}^{++} is used in some large-scale ontologies, e.g., SNOMED

$\mathcal{EL}^{(+)}$ is not so tiny – an example ontology

Endocardium	\Box	$Tissue \sqcap \exists cont-in.HeartWall \sqcap$
		$\exists cont-in.HeartValve$
HeartWall	\subseteq	BodyWall □ ∃part-of.Heart
HeartValve	\subseteq	BodyValve □ ∃part-of.Heart
Endocarditis	\Box	$Inflammation \sqcap \exists has-loc.Endocardium$
Inflammation	\Box	Disease □ ∃acts-on.Tissue
$Heartdisease \sqcap \exists has-loc.HeartValve$	\Box	CriticalDisease
Heartdisease	≡	Disease □ ∃has-loc.Heart

Taken from [Baader et al. 2006]

$\mathcal{EL}^{(+)}$ is not so tiny – an example ontology

Endocardium		Tissue □ ∃cont-in.HeartWall □ ∃cont-in.HeartValve
HeartWall	\Box	BodyWall □ ∃part-of.Heart
HeartValve	\Box	BodyValve □ ∃part-of.Heart
Endocarditis	\Box	$Inflammation \sqcap \exists has-loc.Endocardium$
Inflammation	\Box	Disease □ ∃acts-on.Tissue
Heartdisease ⊓ ∃has-loc.HeartValve	\Box	CriticalDisease
Heartdisease	≡	Disease □ ∃has-loc.Heart
$\mathcal{EL}^+ \begin{cases} part-of \circ part-of \\ part-of \\ part-of \end{cases}$		part-of cont-in
ر has-loc o cont-in		has-loc

Taken from [Baader et al. 2006]

$\label{eq:stisfiability} \textbf{Satisfiability} + \textbf{coherence are trivial:} \hspace{0.1 cm} \textbf{every} \hspace{0.1 cm} \mathcal{EL}\text{-}\textbf{TBox} \hspace{0.1 cm} \textbf{is coherent} \\$

because ?

Satisfiability + coherence are trivial: every \mathcal{EL} -TBox is coherent

•
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$,
for all concept names A and role names r ,
satisfies every \mathcal{EL} axiom

• (
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't – why?)

Satisfiability + coherence are trivial: every \mathcal{EL} -TBox is coherent

•
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$,
for all concept names A and role names r ,
satisfies every \mathcal{EL} axiom

• (
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't – why?)

Subsumption ?

Satisfiability + coherence are trivial: every \mathcal{EL} -TBox is coherent

• \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, for all concept names A and role names r, satisfies every \mathcal{EL} axiom

• (
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't – why?)

Subsumption isn't:

does the following TBox entail $A \sqsubseteq B$? $A' \sqsubseteq B'$?

$$\exists r.A \sqsubseteq \exists r.B$$
$$A' \equiv \exists r.\exists r.A$$
$$B' \equiv \exists r.\exists r.B$$

Satisfiability + coherence are trivial: every $\mathcal{EL}\text{-}\mathsf{TBox}$ is coherent

• \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, for all concept names A and role names r, satisfies every \mathcal{EL} axiom

• (
$$\mathcal{I}$$
 with $A^{\mathcal{I}} = r^{\mathcal{I}} = \emptyset$ doesn't – why?)

Subsumption isn't:

does the following TBox entail $A \sqsubseteq B$? $A' \sqsubseteq B'$?

$$\exists r.A \sqsubseteq \exists r.B$$
$$A' \equiv \exists r.\exists r.A$$
$$B' \equiv \exists r.\exists r.B$$

Without negation, they are not interreducible: Theorem 1 fails!

An Algorithm for \mathcal{EL} subsumption

Goal: present a decision procedure for subsumption in $\mathcal{E\!L}$

Outline:

- Normalisation procedure
- Occision procedure

(simple, naïve, without optimisations)

And now ...

3 A simple poly-time reasoning algorithm

Normal form

 \ldots keeps the reasoning procedure simple

Definition

An $\mathcal{E\!L}$ ontology is in normal form if all axioms have these forms:

$$\begin{array}{cccc} A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \\ A \sqsubseteq \exists r.B \\ \exists r.A \sqsubseteq B \end{array}$$

 $A_{(i)}, B$: concepts **names** r: role $n \ge 1$ is an integer

- \bullet \ldots applies normalisation rules to axioms in a given TBox ${\cal T}$
- each rule transforms an axiom into one or several shorter ones
- $\bullet\,$ old axiom is removed from $\mathcal{T};$ new axioms are added

 \rightsquigarrow results in an "equivalent" TBox \mathcal{T}^{\prime}

The normalisation rules

NF1Input
Output $C \equiv D$
 $\subseteq D$ $D \sqsubseteq C$ $C_{(i)} D$
 $\mathbf{C}_{(i)} D$ arbitrary concepts
complex concepts
BNF2Input
Output $\mathbf{C} \sqsubseteq D$
 $\mathbf{C} \sqsubseteq A$ $A \sqsubseteq D$ A

The normalisation rules

- NF1Input $C \equiv D$
Output $C \equiv D$
 $C \equiv D$ $D \equiv C$ $C_{(i)} D$
C(i) D
Barbitrary concepts
complex concepts
BNF2Input $\mathbf{C} \equiv \mathbf{D}$
Output $\mathbf{C} \equiv \mathbf{D}$
C $\equiv A$ $A \equiv \mathbf{D}$
- **NF3** Input $\exists r. \mathbf{C} \sqsubseteq D$ Output $\mathbf{C} \sqsubseteq A \quad \exists r. A \sqsubseteq D$
- **NF4** Input $C_1 \sqcap \ldots \sqcap \mathbf{C_i} \sqcap \ldots \sqcap C_n \sqsubseteq D$ Output $\mathbf{C_i} \sqsubseteq A$ $C_1 \sqcap \ldots \sqcap A \sqcap \ldots \sqcap C_n \sqsubseteq D$

The normalisation rules

- NF1Input $C \equiv D$
Output $C \sqsubseteq D$ $D \sqsubseteq C$ $C_{(i)} D$
C(i) Darbitrary concepts
complex concepts
BNF2Input $C \sqsubseteq D$
Output $C \sqsubseteq A$ $A \sqsubseteq D$
- **NF3** Input $\exists r. \mathbf{C} \sqsubseteq D$ Output $\mathbf{C} \sqsubseteq A \quad \exists r. A \sqsubseteq D$
- **NF4** Input $C_1 \sqcap \ldots \sqcap \mathbf{C}_i \sqcap \ldots \sqcap C_n \sqsubseteq D$ Output $\mathbf{C}_i \sqsubseteq A \quad C_1 \sqcap \ldots \sqcap A \sqcap \ldots \sqcap C_n \sqsubseteq D$
- **NF5** Input $B \sqsubseteq \exists r. \mathbf{C}$ Output $B \sqsubseteq \exists r. A \quad A \sqsubseteq \mathbf{C}$
- **NF6** Input $B \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$ Output $B \sqsubseteq C_1 \ldots B \sqsubseteq C_n$

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}' • contains new concept names A_1, \ldots, A_k

- $\bullet\,$ is of size linear in the size of ${\cal T}\,$
- \bullet is "equivalent" to ${\mathcal T}$...

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}' • contains new concept names A_1, \ldots, A_k

- $\bullet\,$ is of size linear in the size of ${\cal T}$
- \bullet is "equivalent" to ${\mathcal T}$...

Lemma

• For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}' • contains new concept names A_1, \ldots, A_k

- $\bullet\,$ is of size linear in the size of ${\cal T}$
- \bullet is "equivalent" to ${\mathcal T}$...

Lemma

• For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: T' is equivalent to T w.r.t. subsumption:

$$\mathcal{T} \models C \sqsubseteq D \quad \text{iff} \quad \mathcal{T'} \models C \sqsubseteq D$$

for all C, D that don't use the A_i

Given TBox \mathcal{T} , apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}' • contains new concept names A_1, \ldots, A_k

- $\bullet\,$ is of size linear in the size of ${\cal T}$
- \bullet is "equivalent" to ${\mathcal T}$...

Lemma

• For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: T' is equivalent to T w.r.t. subsumption:

$$\mathcal{T} \models C \sqsubseteq D \quad \text{iff} \quad \mathcal{T'} \models C \sqsubseteq D$$

for all C, D that don't use the A_i

And now ...

3 A simple poly-time reasoning algorithm

Initial assumptions

Input: TBox \mathcal{T} , concept names A, BQuestion: does $\mathcal{T} \models A \sqsubseteq B$ hold?

Assumption of A, B being concept names is no real restriction:

Deciding subsumptions via subsumer sets

Subsumer of A: a concept name B (or \top) with $\mathcal{T} \models A \sqsubseteq B$ **Subsumer set** S(A): set that contains subsumers of A

Deciding subsumptions via subsumer sets

Subsumer of *A*: a concept name *B* (or \top) with $\mathcal{T} \models A \sqsubseteq B$ **Subsumer set** S(A): set that contains subsumers of *A*

Representation of subsumer sets: in a labelled graph $G(\mathcal{T})$

• Nodes of $G(\mathcal{T}) = \text{concept names (or } \top)$ in \mathcal{T}

Deciding subsumptions via subsumer sets

Subsumer of *A*: a concept name *B* (or \top) with $\mathcal{T} \models A \sqsubseteq B$ **Subsumer set** *S*(*A*): set that contains subsumers of *A*

Representation of subsumer sets: in a labelled graph $G(\mathcal{T})$

- Nodes of $G(\mathcal{T}) = \text{concept names (or } \top)$ in \mathcal{T}
- Label of node A: S(A)

 B∈ S(A) means T ⊨ A ⊑ B

 Label of edge (A, B): set R(A, B) of roles

 r∈ R(A, B) means T ⊨ A ⊑ ∃r.B

Outline of the procedure:

- Set $S(A) = \{A, \top\}$ for every A
- Monotonically build G(T)
 by exhaustively applying completion rules
- Check whether $B \in S(A)$ to determine whether $\mathcal{T} \models A \sqsubseteq B$

The completion rules

R1 If $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \in \mathcal{T}$ and $A_1, \ldots, A_n \in S(X)$ but $B \notin S(X)$ then add B to S(X)

The completion rules

R1 If
$$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \in \mathcal{T}$$

and $A_1, \ldots, A_n \in S(X)$ but $B \not\in S(X)$
then add B to $S(X)$

R2 If
$$A \sqsubseteq \exists r.B \in \mathcal{T}$$

and $A \in S(X)$ but $r \notin R(X, B)$
then add r to $R(X, B)$

The completion rules

R1 If
$$A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \in \mathcal{T}$$

and $A_1, \ldots, A_n \in S(X)$ but $B \not\in S(X)$
then add B to $S(X)$

R2 If
$$A \sqsubseteq \exists r.B \in \mathcal{T}$$

and $A \in S(X)$ but $r \not\in R(X, B)$
then add r to $R(X, B)$

R3 If
$$\exists r.A \sqsubseteq B \in \mathcal{T}$$

and $r \in R(X, Y)$ and $A \in S(Y)$ but $B \notin S(X)$
then add B to $S(X)$

The "naïve" subsumption algorithm [Baader et al. 2006]

Algorithm 1

Input: \mathcal{EL} ontology \mathcal{T} Output: S(.) such that $\mathcal{T} \models A \sqsubseteq B$ iff $B \in S(A)$

 $\mathcal{T}' := \mathsf{Normalise}(\mathcal{T})$ % by applying NF1 - NF6 exhaustively

Initialise graph for \mathcal{T}' :

For each concept name A in \mathcal{T}' (or \top) create a node A with $S(A) := \{A, \top\}$ set all edge labels $R(X, Y) := \emptyset$

Exhaustively apply rules R1-R3 to graph Output resulting graph

Exercise

Let's apply the normalisation procedure to the TBox

$$\mathcal{T} = \{ \begin{array}{cc} A \sqsubseteq B \sqcap \exists r.C, \\ C \sqsubseteq \exists s.D, \\ \exists r.\exists s.\top \sqcap B \sqsubseteq D \end{array} \}$$

and then check whether it entails

$$A \sqsubseteq D.$$

Summary

Algorithm 1 ...

- \bullet terminates in time polynomial in the size of ${\cal T}$
- \bullet constructs a canonical model of ${\cal T}$
- is sound and complete: outputs yes iff $\mathcal{T} \models A \sqsubseteq B$
- is one pass (all subsumptions in 1 pass)
- is still slow for big ontologies: ...search for applicable rules over 100K concept names/nodes

Smarter versions of Algorithm 1 ...

- are goal-oriented, "one-pass"
- \bullet are implemented in the reasoners CEL, JCEL, ... for the extension \mathcal{EL}^{++}
- \bullet can be extended even to the Horn fragment of \mathcal{SHIQ}

For details see [Baader et al. 2005, Baader et al. 2006, Kazakov 2009].

Bio-medical ontologies

• SNOMED, the systematized nomenclature of human and veterinary medicine

http://en.wikipedia.org/wiki/SNOMED_CT

- GALEN http://www.opengalen.org
- Go, the Gene Ontology http://www.geneontology.org

References: articles (1)

F. Baader.

Terminological cycles in a description logic with existential restrictions. In *Proc. IJCAI*, pages 325-330, 2003. http://lat.inf.tu-dresden.de/research/papers.html#2003

- F. Baader, S. Brandt, and C. Lutz.
 Pushing the *EL* envelope.
 In *Proc. IJCAI*, pages 364-369, 2005.
 http://www.ijcai.org/papers/0372.pdf

F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in \mathcal{EL}^+ .

In Description Logics, volume 189 of CEUR Workshop Proc., 2006. http://www.ceur-ws.org/Vol-189/submission_8.pdf

References: articles (2)

S. Brandt.

Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and – what else?

In Proc. ECAI, pages 298-302, 2004. http://www.cs.man.ac.uk/~sbrandt/papers.html

Y. Kazakov:

 $\label{eq:consequence-Driven Reasoning for Horn \mathcal{SHIQ} Ontologies. In $Proc. IJCAI, pages 2040–2045, 2009. $$

B. Suntisrivaraporn.

Optimization and Implementation of Subsumption Algorithms for the Description Logic \mathcal{EL} with Cyclic TBoxes and General Concept Inclusion Axioms.

Masters thesis, Technische Universität Dresden, Germany, 2005. http://lat.inf.tu-dresden.de/research/papers.html#2005
- Loads of complexity results
- Other complexity measures
 - data complexity, relevant for OBDA see Misha's course on Thursday!
 - average case
- Other (reasoner) performance considerations
 - what makes reasoning hard: size, tree-width
 - robustness
 - robustness under (small) changes to \mathcal{O} & performance homo/heterogeneity
- Other reasoning problems
 - module extraction and inseparability
 - decomposition of ontologies
 - entailment explanation and justifications

Ask us for pointers, or look at Thomas Schneider & my ESSLLI 2012 course notes

Thank you for your attention!