
Computational Complexity
of

Description Logics:

a Friendly Introduction to Some Interesting Phenomena

Uli Sattler

University of
Manchester

1

Warm up

Which of the following subsumptions hold?
(1) r some (A and B) is subsumed by r some A

∃r.(A "B) # ∃r.A

(2) (r some A) and (r only B) is subsumed by r some B
∃r.A " ∀r.B # ∃r.B

(3) r only (A and not A) is subsumed by r only B
∀r.(A " ¬A) # ∀r.B

(4) r some (r only A) is subsumed by r some (r some (A or not A))
∃r.(∀r.A) # ∃r.(∃r.(A % ¬A)

(3) r only (A and B) is subsumed by (r only A) and (r only B)
∀r.(A "B) # ∀r.A " ∀r.B

(4) r some B is subsumed by r only B
∃r.B # ∀r.A

University of
Manchester

2

• we will discuss a lot of things

• but also leave out a lot

• ...please ask if you have a question!

University of
Manchester

3

Reminder: Standard DL Reasoning Problems

Given an ontology O = (T , A),
• is O consistent? O |= & # ⊥?

• is O coherent? is there concept name A with O |= A # ⊥?

• compute concept hierarchy! for all concept names A, B: O |= A # B?

• classify individuals! for all concept names A, individual names b: O |= b : B?

Theorem 1 Let O be an ontology and a an individual name not in O. Then

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent

2. O is coherent iff, for each concept name A,
O ∪ {a : A} is consistent

3. O |= A # B iff O ∪ {a : (A " ¬B)} is not consistent

4. O |= b : B iff O ∪ {b : ¬B} is not consistent

! a decision procedure for consistency decides all standard DL reasoning problems

University of
Manchester

4

Decision Procedure

• A problem is a set P ⊆ M

– e.g., M is the set of all ALC ontologies,

– P ⊆ M is the set of all consistent ALC ontologies

– ...and the problem P is to decide whether, for a given m ∈ M , we have m ∈ P

• An algorithm is a decision procedure for a problem P ⊆ M if it is

– sound for P : if it answers ”m ∈ P ”, then m ∈ P

– complete for P : if m ∈ P , then it answers ”m ∈ P ”

– terminating: it stops after finitely many steps on any input m ∈ M

Why does ”sound and complete” not suffice for being a decision procedure?

University of
Manchester

5

The tableau algorithm for ALC ontologies

Earlier: Anni explained a tableau algorithm for ALC

Input: ALC TBox T , ALC concept name C

Output: “yes” if C is satisfiable wrt. T
“no” if not

Is this algorithm

• sound?

• complete?

• terminating?

• ...and how long does it run?

University of
Manchester

6

Properties of our tableau algorithm

Lemma 1: Let O = (T , A) be an ALC ontology in NNF. Then

1. the algorithm terminates when applied to T and C

2. if the rules generate a complete & clash-free ABox, then C is satisfiable wrt. T
3. if C is satisfiable wrt. T , then the rules generate a clash-free & complete ABox

Corollary 1:

1. Our tableau algorithm decides satisfiability of ALC concepts wrt. TBoxes.

2. Satisfiability of ALC concepts (no TBox!) is decidable in PSpace.

3. Satisfiability of ALC concepts wrt. TBoxes is decidable in ExpSpace.

4. ALC concepts have the finite model property
i.e., every consistent ontology has a finite model.

5. ALC concepts have the tree model property
i.e., every consistent ontology has a tree model.

University of
Manchester

7

Regarding Corollary 1.2

If we start the algorithm with {a : C}
to test satisfiability of C, and
construct ABox in non-deterministic depth-first manner
rather than constructing set of ABoxes
so that we only consider a single ABox and
re-use space for branches already visited,

mark b : ∃R.C ∈ A with “todo” or “done”

we can run tableau algorithm (even without blocking) in
polynomial space:

• ABox is of depth bounded by |C|, and

• we keep only a single branch in memory at any time.

University of
Manchester

8

Regarding Corollary 1.3

If we start the algorithm withwith {a : C} and T
to test satisfiability of C wrt. T , and
construct ABox in non-deterministic depth-first manner
rather than constructing set of ABoxes
so that we only consider a single ABox

we can run tableau algorithm in exponential space:

• number of individuals in ABox is bounded by 2# sub(T)

This is not optimal: consistency of ALC ontologies is decidable
in exponential time, in fact ExpTime-complete.

University of
Manchester

9

A tableau algorithm for ALC: Summary

The tableau algorithm presented here

" decides consistency of ALC ontologies, and thus also

" all other standard reasoning problems

" uses blocking to ensure termination, and

" can be implemented as such or
using a non-deterministic alternative for the %-rule and backtracking.

" uses P/Exp-Space

" can be implemented in various ways,

– order/priorities of rules

– data structure

– etc.

" is amenable to optimisations...

University of
Manchester

10

Implementing the ALC Tableau Algorithm

Naive implementation of ALC tableau algorithm is doomed to failure:

It constructs a

• set of ABoxes,

• each ABox being of possibly exponential size, with possibly exponentially many indi-
viduals (see binary counting example)

• in the presence of a GCI such as& # (C1%D1)" . . ."(Cn%Dn) and exponentially
many individuals, algorithm might generate double exponentially many ABoxes

! requires double exponential space or

• use non-deterministic variant and backtracking to consider one ABox at a time

! requires exponential space

University of
Manchester

11

Implementing the ALC Tableau Algorithm

Optimisations are crucial

concern every aspect of the algorithm

help in “many” cases (which?)

are implemented in various DL reasoners

e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations

University of
Manchester

12

Optimising the ALC Tableau Algorithm: Classification

Reasoners provides service “classify all concept names in T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C # D?

! test consistency of T ∪ {a : (C " ¬D)}
! n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept
C into hierarchy computed so
far

NO YES
D2

&

D1

E1 E2

C # Di w.r.t. T ?

C # Di w.r.t. T ?

University of
Manchester

13

Optimising the ALC Tableau Algorithm: Classification II

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C # D?

! test consistency of T ∪ {a : (C " ¬D)}
! n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept
C into hierarchy computed so
far

NO YES
D2

&

D1

E1 E2

C # Di w.r.t. T ?

C # Di w.r.t. T ?

University of
Manchester

14

Optimising the ALC Tableau Algorithm: Classification III

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C # D?

! test consistency of T ∪ {a : (C " ¬D)}
! n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept
C into hierarchy computed so
far

YESNO
D2

&

D1

E1 E2

C # Di w.r.t. T ?

C # Ei w.r.t. T ?

University of
Manchester

15

Optimising the ALC Tableau Algorithm: Classification IV

Reasoners provides service “classify all concept names T ”, i.e.,

for all concept names C, D in T , reasoner decides does T |= C # D?

! test consistency of T ∪ {a : (C " ¬D)}
! n2 consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 2: • maintain graph with a node for each concept name

• edges representing subsumption, disjointness (T |= A # ¬B), and
non-subsumption

• initialise graph with all “obvious” information in T
• to avoid testing subsumption, exploit

– all info in ABox during tableau algorithm to update graph

– transitivity of subsumption and its interaction with disjointness

University of
Manchester

16

Optimising the ALC Tableau Algorithm: Absorption

Remember: for T = {Ci # Di | 1 ≤ i ≤ n},
each individual x will have n disjunctions x : (¬̇Ci %Di) due to

GCI-rule: if T = {Ci # Di | 1 ≤ i ≤ n}
replace A with A ∪ {a : (¬̇C1 %D1) " (¬̇C2 %D2) " . . . " (¬̇Cn %Dn)}

Problem: high degree of choice and huge search space
blows up set of ABoxes...we can do better:

2GCI-rule: if C # D ∈ T , a is not blocked, and
if C is a concept name, a : C ∈ A but a : D ,∈ A,

replace A with A ∪ {a : D}
else if a : (¬̇C %D) ,∈ A for a in A,

replace A with A ∪ {a : (¬̇C %D)}

Problem: still possibly high degree of choice and huge search space...

University of
Manchester

17

Optimising the ALC Tableau Algorithm: Absorption

Observation: many GCIs are of the form A " . . . # C for concept name A

e.g., Human " . . . # C or Device " . . . # C

Idea: localise GCIs to concept names by transforming

A "X # C into equivalent A # ¬X % C

e.g., Human " ∃owns.Pet # C becomes Human # ¬∃owns.Pet % C

For “absorbed” T = {Ai # Di | 1 ≤ i ≤ n1} ∪ {Ci # Di | 1 ≤ i ≤ n2}
the second, non-deterministic choice in GCI-rule is taken only n2 times.

2GCI-rule: if C # D ∈ T , a is not blocked, and
if C is a concept name, a : C ∈ A but a : D ,∈ A,

replace A with A ∪ {a : D}
else if a : (¬̇C %D) ,∈ A for a in A,

replace A with A ∪ {a : (¬̇C %D)}

University of
Manchester

18

Optimising the ALC Tableau Algorithm: Absorption

Observation: many GCIs are of the form A " . . . # C for concept name A

e.g., Human " . . . # C or Device " . . . # C

Idea: localise GCIs to concept names by transforming

A "X # C into equivalent A # ¬X % C

e.g., Human " ∃owns.Pet # C becomes Human # ¬∃owns.Pet % C

Observations: If no GCI is absorbable, nothing changes

Each absorption saves 1 disjunction per individual outside Ai,

in the best case, this avoids almost all disjunctions from TBox axioms!

University of
Manchester

19

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A "B) " ((C1 %D1) " . . . " (Cn %Dn)) " ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

x

%

% %

%

%%
x

x

R

yL(y) = {(A "B), ¬A, A, B}

Clash

R

y L(y) = {(A "B), ¬A, A, B}

Clash Clash . . . Clash

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

L(x) ∪ {Cn}

University of
Manchester

20

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A "B) " ((C1 %D1) " . . . " (Cn %Dn)) " ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

%

% %

%

%%
x

x

R

yL(y) = {(A "B), ¬A, A, B}

Clash

University of
Manchester

21

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A "B) " ((C1 %D1) " . . . " (Cn %Dn)) " ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

%

% %

%

%%
x

x

R

yL(y) = {(A "B), ¬A, A, B}

Clash

R

y

Clash

L(y) = {(A "B), ¬A, A, B}

University of
Manchester

22

Optimising the ALC Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A "B) " ((C1 %D1) " . . . " (Cn %Dn)) " ∀R.¬A

R

y

Clash

L(y) = {(A "B), ¬A, A, B}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

%

% %

%

%%
x

x

R

yL(y) = {(A "B), ¬A, A, B}

Clash

University of
Manchester

23

Optimising the ALC Tableau Algorithm: SAT Optimisations

Finally: ALC extends propositional logic

! heuristics developed for SAT are relevant

Summing up: optimisations are possible at each aspect of tableau algorithm

can dramatically enhance performance

! do they interact?

! how?

! which combination works best for which “cases”?

! is the optimised algorithm still correct?

... check out ORE 2013 results & our “Robustness” paper at DL 2013

University of
Manchester

24

...now for some proper computational complexity...

University of
Manchester

25

Computational Complexity

We have seen 1 algorithm that runs

• in PSpace without a TBox

• in non-deterministic ExpSpace with a TBox

...can we do better? How can we tell? ...perhaps try much harder, think much longer?

...how do we show that our algorithm is optimal? And what does that mean anyway?

! look at complexity...

University of
Manchester

26

Complexity

We distinguish between

• cognitive complexity:

– e.g., how hard is it, for a human, to determine/understand O |=? C # D

– interesting, little understood topic

– relevant to provide tool support for ontology engineers

• computational complexity:

– e.g., how much time/space do we need to determine O |=? C # D

– well understood topic

– loads of results thanks to relationships DL - FOL - Modal Logic

– relevant to understand

∗ trade-off between expressivity (of a DL) and complexity of reasoning

∗ whether a given algorithm is optimal/can be improved

University of
Manchester

27

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• e.g., P = the set of consistent ALC ontologies and
M = the set of all ALC ontologies

• think of it as black box with

– input m ∈ M

– output “yes” if m ∈ P
“no” if m ,∈ P

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′

• m ∈ P iff π(m) ∈ P ′

• e.g., our translation t() from ALC to FOL

• e.g., our reduction from subsumption to ontology consistency

University of
Manchester

28

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′

University of
Manchester

29

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′

Fact: if P ⊆ M is reducible to P ′ ⊆ M ′, then
P is at most as hard/complexa as P ′

because P can be solved by solving P ′ via π
aOf course only for suitably complex problems.

University of
Manchester

30

Computational Complexity

Some standard complexity classes:

Name Meaning Examples

L logarithmic space graph accessibility

P polynomial time model checking

NP nondeterministic pol. time prop. logic SAT

PSpace polynomial space Q-SAT

ExpTime exponential time

NExpTime nondeterministic exponential time

ExpSpace exponential space

.

undecidable FOL-SAT

University of
Manchester

31

Computational Complexity: Decision Problems

To determine that a problem P ⊆ M is

• in a complexity class C, it suffices to

– design/find an algorithm

– show that it is sound, complete, and terminating, and

– show that this algorithm runs, for every m ∈ M , in at most C resources

– ...this algorithm can be a reduction to a problem known to be in C
• hard for a complexity class C, we need to

– find a suitable problem P ′ ⊆ M ′ that is known to be hard for C and

– a reduction π(.) from P ′ to P

• complete for a complexity class C, we need to show that it is

– in C and

– hard for C

University of
Manchester

32

Known Complexity Results so Far:

• We have seen that ALC concept satisfiability (no TBox) is in PSpace:

– non-deterministic tableau algorithm runs in polynomial space

– can be extended to ABoxes

we can’t do better: ALC satisfiability is PSpace-hard:

– but proof is a bit cumbersome

– via a reduction of satisfiability of quantified Boolean formulae

• We have seen that ALC concept satisfiability w.r.t. TBoxes is in NExpSpace:

– non-deterministic tableau algorithm runs in exponential space

– can be extended to ABoxes & ontology consistency

– can be extended to ALCQI , ALCQO, and ALCIO
we can do better: ALC satisfiability wrt. TBoxes is ExpTime-complete:

– but such (optimal) algorithm takes too long for this course

– as is lower bound/hardness proof
(via a reduction of the halting problem of polynomial-space-bounded alternating TMs)

University of
Manchester

33

Worst-Case Complexity – why we bother

Understanding lower bounds/hardness of problems

• tell us when “in principle” improvement of algorithms is futile

• inform us of relationships of logics:

– who is harder than who?

– which are of similar difficulty?

• their proofs often

– reveal interesting model theoretic properties:

∗ tree model property: each satisfiable input has a tree-shaped model

∗ finite model property: each satisfiable input has a finite model

– use interesting translations between logics

They don’t always tell us much about “typical” performance...

University of
Manchester

34

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,
e.g., like this, on all problems of size 7:

University of
Manchester

35

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,
e.g., or like this, on all problems of size 7:

University of
Manchester

36

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,
e.g., or like this, on all problems of size 7:

University of
Manchester

37

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,
e.g., or like this, on all problems of size 7:

University of
Manchester

38

Is concept satisfiability always easier?

Earlier, we have claimed that, for ALC,

• concept satisfiability is in PSpace, but

• concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for ALCu, the extension of ALC with

• universal role u with uI = ∆I ×∆I

⇒ concept satisfiability is as hard as reasoning w.r.t. a TBox, namely
ExpTime-hard

• this is typical phenomenon where the

– certain constructors enable us to internalise a TBox

University of
Manchester

39

Internalising a TBox

Remember: for T = {C1 # D1, . . . , Cn # Dn}, we use

CT = (¬C1 %D1) " . . . " (¬Cn %Dn)

for the universal T concept that has to hold everywhere

Reduction: for C a concept and T a TBox, define

π(C, T) = C " ∀u.CT

Lemma: 1. C is satisfiable w.r.t. T iff the concept π(C, T) is satisfiable

2. the size of π(C, T) is linear in that of C plus T

Corollary: satisfiability of ALCu concepts is as hard as
satisfiability of ALC concepts w.r.t. TBoxes is, namely ExpTime-hard

University of
Manchester

40

Let’s do that again!

University of
Manchester

41

Is concept satisfiability always easier? II

Earlier, we have claimed that, for ALC,

• concept satisfiability is in PSpace, but

• concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for ALCIO, the extension of ALC with

• inverse roles r− with (r−)I = {(y, x) | (x, y) ∈ rI} and

• nominals, i.e., individual names used as concept names

⇒ concept satisfiability is as hard as reasoning w.r.t. a TBox, namely
ExpTime-hard

• this is typical phenomenon where the

– combination of certain constructors enables us to internalise a TBox

University of
Manchester

42

Internalising a TBox II

Remember: for T = {C1 # D1, . . . , Cn # Dn}, we use

CT = (¬C1 %D1) " . . . " (¬Cn %Dn)

for the universal T concept that has to hold everywhere

Reduction: for C a concept and T a TBox, define

π(C, T) = C " CT " ∃p. ({o} " ∀p−.("
r
∀r.(∃p.{o} " CT))

Lemma: 1. C is satisfiable w.r.t. T iff the concept π(C, T) is satisfiable

2. the size of π(C, T) is linear in that of C plus T

Corollary: satisfiability of ALCIO concepts is as hard as
satisfiability of ALCIO concepts w.r.t. TBoxes, namely ExpTime-hard

University of
Manchester

43

Are all DLs in ExpTime?

Earlier, we have claimed that ALCQI , ALCQO, and ALCIO are all
ExpTime-complete, i.e., as hard/easy as ALC

Next, we will see that consistency of ALCQIO ontologies,
the extension of ALC with

• inverse roles r− with (r−)I = {(y, x) | (x, y) ∈ rI}
• number restrictions, in fact functionality restrictions (≤ 1r &) and

• nominals, i.e., individual names used as concept names

⇒ is harder, namely NExpTime-hard

• this is typical phenomenon where

– combination of otherwise harmless constructors

leads to increased complexity

University of
Manchester

44

ALCQIO is NExpTime-hard

We follow our hardness proof recipe:

• to show that consistency of ALCQIO ontologies is NExpTime-hard, we

– find a suitable problem P ′ ⊆ M ′ that is known to be NExpTime-hard and

– a reduction from P ′ to ALCQIO consistency

The NExpTime version of the domino problem

University of
Manchester

45

Domino Problems

Definition: A domino system D = (D, H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions
H ⊆ D ×D and V ⊆ D ×D

A tiling for D is a function:

t : N× N → D such that
〈t(m, n), t(m + 1, n)〉 ∈ H and
〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problems: classical given D, does D have a tiling?

⇒ well-known that this problem is undecidable [Berger66]

NexpTime given D, does D have a tiling for 2n × 2n square?

⇒ well-known that this problem is NExpTime-hard

University of
Manchester

46

Reduction of NExpTime Domino Problem to ALCQIO Consistency

To reduce the NExpTime domino problem to ALCQIO consistency, we need to

• define a mapping π(.) from domino problems to ALCQIO ontologies such that

D has an 2n × 2n mapping iff π(D) is consistent
and

size of π(D) is polynomial in n

University of
Manchester

47

Mapping a Domino System into an ALCQIO Ontology

Elements in models of π(D) will stand for points in the grid, i.e., (m, n)...

We can express various obligations of the domino problem in ALC TBox axioms:

$ each element carries exactly one domino type Di

! use concept name Di for each domino type and

& # D1 % . . . %Dd % each element carries a domino type

D1 # ¬D2 " . . . " ¬Dd % but not more than one
D2 # ¬D3 " . . . " ¬Dd % ...

... ...
Dd−1 # ¬Dd

University of
Manchester

48

Mapping a Domino System into an ALCQIO Ontology

% every element has a horizontal (X-) successor and a vertical (Y -) successor

& # ∃X.& " ∃Y.&

& every element satisfies D’s horizontal/vertical matching conditions:

D1 # #
(D1,D)∈H

∀X.D " #
(D1,D)∈V

∀Y.D

D2 # #
(D2,D)∈H

∀X.D " #
(D2,D)∈V

∀Y.D

... ...
Dd # #

(Dd,D)∈H
∀X.D " #

(Dd,D)∈V
∀Y.D

Does this suffice?
I.e., does D have a 2n × 2n tiling iff one Di is satisfiable w.r.t. $ to &?

• if yes, we have shown that satisfiability of ALC is NExpTime-hard

• so no...what is missing?

University of
Manchester

49

Mapping a Domino System into an ALCQIO Ontology

Two things are missing:

1. the model must be large enough, namely 2n × 2n and

2. for each element, its horizontal-vertical-successors coincide with their
vertical-horizontal-successors and vice versa

This will be addressed using a “counting and binding together” trick ...

University of
Manchester

50

Mapping a Domino System into an ALCQIO Ontology

' counting and binding together

(a) use A1, . . . , An, B1, . . . , Bn as “bits” for binary representation of grid position

e.g., (010, 011) is represented by an instance of ¬A3, A2, ¬A1, ¬B3, B2, B1

write GCI to ensure that X- and Y -successors are incremented correctly

e.g., X-successor of (010, 011) is (011, 011)

e.g., Y -successor of (010, 011) is (010, 100)

(b) use a nominal to ensure that there is only one (111. . . 1, 111. . . 1)

this implies, with& # (≤ 1 X−.&)"(≤ 1 Y −.&) uniqueness of grid positions

University of
Manchester

51

Mapping a Domino System into an ALCQIO Ontology

' counting and binding together

(a) Ãi for “bit Ai is incremented correctly”:

& # Ã1 " . . . " Ãn

Ã1 # (A1 " ∀X.¬A1) % (¬A1 " ∀X.A1)

Ãi # ("
"<i

A" " ((Ai " ∀X.¬Ai) % (¬Ai " ∀X.Ai))%
(¬ "

"<i
A" " ((Ai " ∀X.Ai) % (¬Ai " ∀X.¬Ai))

(add the same for the Bis)

(b) ensure uniqueness of grid positions:

A1 " . . . "An "B1 " . . . "Bn # {o} % top right (2n, 2n) is unique

& # (≤ 1 X−.&) " (≤ 1 Y −.&) % everything else is also unique

University of
Manchester

52

Reduction of NExpTime Domino Problem to ALCQIO Consistency

Lemma: let π(D) be ontology consisting of all axioms mentioned in $-':

• D has an 2n × 2n tiling iff π(D) is consistent

• size of π(D) is polynomial (quadratic) in

– the size of D and

– n

Since the NExpTime-domino problem is NExpTime-hard, this implies
consistency of ALCQIO is also NExpTime-hard:

if we could solve consistency of ALCQIO in, say, ExpTime,
this would allow us to solve the domino problem also in ExpTime via π(.)

University of
Manchester

53

Let’s do this again!

University of
Manchester

54

Are all DLs decidable?

So far, we have extended ALC with

• inverse role and

• number restrictions

• ...which resulted in logics whose reasoning problems are decidable

• ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

• ALC with role chain inclusions

• ALC with number restrictions on complex roles

University of
Manchester

55

An undecidable DL: ALC with role chain inclusions

OWL 2 supports axioms of the form

• r # s: a model of O with r # s ∈ O must satisfy rI ⊆ sI

• trans(r): a model of O with trans(r) ∈ O must satisfy rI ◦rI ⊆ rI ,

where p ◦ q = {(x, z) | there is y : (x, y) ∈ p and (y, z) ∈ q},

i.e., a model I of O must interpret r as a transitive relation

• r ◦s # t: a model of O with r ◦s # t ∈ O must satisfy rI ◦sI ⊆ tI

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and
undecidability

University of
Manchester

56

How to prove undecidability of a DL

Similar to hardness results, we prove undecidability of a DL as follows:

1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox

• remember Theorem 1?

• if concept satisfiability w.r.t. TBox is undecidable,

• then so is consistency of ontology

• then so is subsumption w.r.t. TBox

• ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

3. provide a (computable) mapping π(·) that

• takes an instance D of the domino problem and

• turns it into a concept AD and a TBox TD such that

• D has a tiling if and only if AD is satisfiable w.r.t. TD

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as
a decision procedure for the domino problem

University of
Manchester

57

The Classical Domino Problem

using D?

types
dominoe
of
set
a fixed
D,

can we tile the
first quadrant

University of
Manchester

58

The Classical Domino Problem

Definition: A domino system D = (D, H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D ×D and V ⊆ D ×D

A tiling for D is a (total) function:

t : N× N → D such that
〈t(m, n), t(m + 1, n)〉 ∈ H and
〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problem: given D, has D a tiling?

It is well-known that this problem is undecidable [Berger66]

University of
Manchester

59

Almost Encoding the Classical Domino Problem in ALC

We have already see how to express various obligations of the domino problem in
ALC TBox axioms:

$ each element carries exactly one domino type Di #

! use unary predicate symbol Di for each domino type and

& # D1 % . . . %Dd % each element carries a domino type

D1 # ¬D2 " . . . " ¬Dd % but not more than one
D2 # ¬D3 " . . . " ¬Dd % ...

... ...
Dd−1 # ¬Dd

University of
Manchester

60

Almost Encoding the Classical Domino Problem in ALC

% every element has a horizontal (X-) successor and a vertical (Y -) successor #

& # ∃X.& " ∃Y.&

& every element satisfies D’s horizontal/vertical matching conditions: #

D1 # #
(D1,D)∈H

∀X.D " #
(D1,D)∈V

∀Y.D

D2 # #
(D2,D)∈H

∀X.D " #
(D2,D)∈V

∀Y.D

... ...
Dd # #

(Dd,D)∈H
∀X.D " #

(Dd,D)∈V
∀Y.D

Does this suffice?

No, we know that it doesn’t!

University of
Manchester

61

Encoding the Classical Domino Problem in ALC with role chain inclusions

' for each element, its horizontal-vertical-successors coincide with their
vertical-horizontal-successors & vice versa

X ◦ Y # Y ◦X and Y ◦X # X ◦ Y

Lemma: Let TD be the axioms from $ to '.
Then & is satisfiable w.r.t. TD iff D has a tiling.

• since the domino problem is undecidable, this implies undecidability of
concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions

• due to Theorem 1, all other standard reasoning problems are undecidable, too

• Proof: 1. show that, from a tiling for D, you can construct a model of TD

2. show that, from a model I of TD, you can construct a tiling for D
(tricky because elements in I can have several X- or Y -successors
but we can simply take the right ones...)

University of
Manchester

62

Let’s do this again!

University of
Manchester

63

Let’s do this again!

What other constructors can us help to express obligation '?

• counting and complex roles (role chains and role intersection):

& # (≤ 1X.&) " (≤ 1Y.&) " (∃(X ◦ Y) " (Y ◦X).&)

• restricted role chain inclusions (only 1 role on RHS), and counting on non-simple roles:

& # (≤ 1X.&) " (≤ 1Y.&)
X ◦ Y # r
Y ◦X # r

& # (≤ 1r.&)

• various others...

University of
Manchester

64

Are all DLs hard/intractable?

Let’s see a less complex DL: EL

University of
Manchester

65

What is EL? Normalisation Reasoning

Thanks to Thomas Schneider, University of Bremen: he made the
originals of these slides, which I borrowed and slightly modified

Uli Sattler DL: EL 1

What is EL? Normalisation Reasoning

Are all DLs intractable?

1 What is EL?

2 Normalisation

3 A simple poly-time reasoning algorithm

Uli Sattler DL: EL 2

What is EL? Normalisation Reasoning

And now . . .

1 What is EL?

2 Normalisation

3 A simple poly-time reasoning algorithm

Uli Sattler DL: EL 3

What is EL? Normalisation Reasoning

Summary

EL is a restriction of ALC that . . .

allows only conjunction and existential restrictions
is at the heart of OWL 2 EL
whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for
deciding subsumption etc.

can be extended to EL++ with other features, without
increase in complexity:
⊥ domain and range restrictions
disjoint concepts concept and role assertions
role (chain) inclusions nominals
transitive roles, reflexive roles concrete domains

whose extension with inverse roles or counting increases
complexity to that of ALC

Uli Sattler DL: EL 4

What is EL? Normalisation Reasoning

Summary

EL is a restriction of ALC that . . .

allows only conjunction and existential restrictions
is at the heart of OWL 2 EL
whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for
deciding subsumption etc.

can be extended to EL++ with other features, without
increase in complexity:
⊥ domain and range restrictions
disjoint concepts concept and role assertions
role (chain) inclusions nominals
transitive roles, reflexive roles concrete domains

whose extension with inverse roles or counting increases
complexity to that of ALC

Uli Sattler DL: EL 4

What is EL? Normalisation Reasoning

Summary

EL is a restriction of ALC that . . .

allows only conjunction and existential restrictions
is at the heart of OWL 2 EL
whose standard reasoning problems are in PTime, i.e.,

i.e., there is a worst-case polynomial-time algorithm for
deciding subsumption etc.

can be extended to EL++ with other features, without
increase in complexity:
⊥ domain and range restrictions
disjoint concepts concept and role assertions
role (chain) inclusions nominals
transitive roles, reflexive roles concrete domains

whose extension with inverse roles or counting increases
complexity to that of ALC

Uli Sattler DL: EL 4

What is EL? Normalisation Reasoning

Syntax and semantics of EL

Concepts

For C ,D concepts and R a role name:

Constructor Syntax Example Semantics
top > ∆I

conjunction CuD Human u Male CI ∩ DI

exist. restr. ∃r .C ∃hasChild.Human {x | ∃y .(x , y)∈ rI ∧ y ∈CI}

Axioms

C v D
C ≡ D as a shortcut for “C v D, D v C”

Uli Sattler DL: EL 5

What is EL? Normalisation Reasoning

What a tiny logic !?

3 We can say in EL 8 but we can’t say
Hand v ∃ hasPart.Finger Hand v =5 hasPart.Finger

Finger v ∃ hasPart−.Hand

8 We’d like to say, but can’t 3 all we can say (in EL++) is
MildFlu ≡ Flu u ∀ symptom.¬Triv MildFlu v Flu
Triv ≡ Cough t Sneeze. t Headache Cough v Triv, Sneeze v Triv, ...
MildFlu ≡ Flu u ∀ symptom.¬Fever MildFlu u ∃ symptom.Fever v ⊥

EL++ is used in some large-scale ontologies, e.g., SNOMED

Uli Sattler DL: EL 6

What is EL? Normalisation Reasoning

What a tiny logic !?

3 We can say in EL 8 but we can’t say
Hand v ∃ hasPart.Finger Hand v =5 hasPart.Finger

Finger v ∃ hasPart−.Hand

8 We’d like to say, but can’t 3 all we can say (in EL++) is
MildFlu ≡ Flu u ∀ symptom.¬Triv MildFlu v Flu
Triv ≡ Cough t Sneeze. t Headache Cough v Triv, Sneeze v Triv, ...
MildFlu ≡ Flu u ∀ symptom.¬Fever MildFlu u ∃ symptom.Fever v ⊥

EL++ is used in some large-scale ontologies, e.g., SNOMED

Uli Sattler DL: EL 6

What is EL? Normalisation Reasoning

What a tiny logic !?

3 We can say in EL 8 but we can’t say
Hand v ∃ hasPart.Finger Hand v =5 hasPart.Finger

Finger v ∃ hasPart−.Hand

8 We’d like to say, but can’t 3 all we can say (in EL++) is
MildFlu ≡ Flu u ∀ symptom.¬Triv MildFlu v Flu
Triv ≡ Cough t Sneeze. t Headache Cough v Triv, Sneeze v Triv, ...
MildFlu ≡ Flu u ∀ symptom.¬Fever MildFlu u ∃ symptom.Fever v ⊥

EL++ is used in some large-scale ontologies, e.g., SNOMED

Uli Sattler DL: EL 6

What is EL? Normalisation Reasoning

EL(+) is not so tiny – an example ontology

Endocardium v Tissue u ∃cont-in.HeartWallu
∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart
HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium
Inflammation v Disease u ∃acts-on.Tissue

Heartdisease u ∃has-loc.HeartValve v CriticalDisease
Heartdisease ≡ Disease u ∃has-loc.Heart

part-of ◦ part-of v part-of
part-of v cont-in

has-loc ◦ cont-in v has-loc
EL+



Taken from [Baader et al. 2006]

Uli Sattler DL: EL 7

What is EL? Normalisation Reasoning

EL(+) is not so tiny – an example ontology

Endocardium v Tissue u ∃cont-in.HeartWallu
∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart
HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium
Inflammation v Disease u ∃acts-on.Tissue

Heartdisease u ∃has-loc.HeartValve v CriticalDisease
Heartdisease ≡ Disease u ∃has-loc.Heart

part-of ◦ part-of v part-of
part-of v cont-in

has-loc ◦ cont-in v has-loc
EL+


Taken from [Baader et al. 2006]

Uli Sattler DL: EL 7

What is EL? Normalisation Reasoning

Satisfiability and subsumption

Satisfiability + coherence are trivial: every EL-TBox is coherent

because ?

I with AI = ∆I and rI = ∆I × ∆I ,
for all concept names A and role names r ,
satisfies every EL axiom
(I with AI = rI = ∅ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail A v B ? A′ v B′ ?

∃r .A v ∃r .B
A′ ≡ ∃r .∃r .A
B′ ≡ ∃r .∃r .B

Without negation, they are not interreducible: Theorem 1 fails!

Uli Sattler DL: EL 8

What is EL? Normalisation Reasoning

Satisfiability and subsumption

Satisfiability + coherence are trivial: every EL-TBox is coherent

I with AI = ∆I and rI = ∆I × ∆I ,
for all concept names A and role names r ,
satisfies every EL axiom
(I with AI = rI = ∅ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail A v B ? A′ v B′ ?

∃r .A v ∃r .B
A′ ≡ ∃r .∃r .A
B′ ≡ ∃r .∃r .B

Without negation, they are not interreducible: Theorem 1 fails!

Uli Sattler DL: EL 8

What is EL? Normalisation Reasoning

Satisfiability and subsumption

Satisfiability + coherence are trivial: every EL-TBox is coherent

I with AI = ∆I and rI = ∆I × ∆I ,
for all concept names A and role names r ,
satisfies every EL axiom
(I with AI = rI = ∅ doesn’t – why?)

Subsumption ?

Subsumption isn’t:
does the following TBox entail A v B ? A′ v B′ ?

∃r .A v ∃r .B
A′ ≡ ∃r .∃r .A
B′ ≡ ∃r .∃r .B

Without negation, they are not interreducible: Theorem 1 fails!

Uli Sattler DL: EL 8

What is EL? Normalisation Reasoning

Satisfiability and subsumption

Satisfiability + coherence are trivial: every EL-TBox is coherent

I with AI = ∆I and rI = ∆I × ∆I ,
for all concept names A and role names r ,
satisfies every EL axiom
(I with AI = rI = ∅ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail A v B ? A′ v B′ ?

∃r .A v ∃r .B
A′ ≡ ∃r .∃r .A
B′ ≡ ∃r .∃r .B

Without negation, they are not interreducible: Theorem 1 fails!

Uli Sattler DL: EL 8

What is EL? Normalisation Reasoning

Satisfiability and subsumption

Satisfiability + coherence are trivial: every EL-TBox is coherent

I with AI = ∆I and rI = ∆I × ∆I ,
for all concept names A and role names r ,
satisfies every EL axiom
(I with AI = rI = ∅ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail A v B ? A′ v B′ ?

∃r .A v ∃r .B
A′ ≡ ∃r .∃r .A
B′ ≡ ∃r .∃r .B

Without negation, they are not interreducible: Theorem 1 fails!
Uli Sattler DL: EL 8

What is EL? Normalisation Reasoning

An Algorithm for EL subsumption

Goal: present a decision procedure for subsumption in EL

Outline:
1 Normalisation procedure
2 Decision procedure

(simple, naïve, without optimisations)

Uli Sattler DL: EL 9

What is EL? Normalisation Reasoning

And now . . .

1 What is EL?

2 Normalisation

3 A simple poly-time reasoning algorithm

Uli Sattler DL: EL 10

What is EL? Normalisation Reasoning

Normal form

. . . keeps the reasoning procedure simple

Definition
An EL ontology is in normal form if all axioms have these forms:

A1 u . . . u An v B
A v ∃r .B

∃r .A v B

A(i),B: concepts names r : role n > 1 is an integer

Uli Sattler DL: EL 11

What is EL? Normalisation Reasoning

The normalisation procedure

. . . applies normalisation rules to axioms in a given TBox T
each rule transforms an axiom into one or several shorter ones
old axiom is removed from T ; new axioms are added
; results in an “equivalent” TBox T ′

Uli Sattler DL: EL 12

What is EL? Normalisation Reasoning

The normalisation rules

C(i) D arbitrary concepts
C(i) D complex concepts
B concept name
A fresh concept name

NF1 Input C ≡ D
Output C v D D v C

NF2 Input C v D
Output C v A A v D

NF3 Input ∃r .C v D
Output C v A ∃r .A v D

NF4 Input C1 u . . . u Ci u . . . u Cn v D
Output Ci v A C1 u . . . u A u . . . u Cn v D

NF5 Input B v ∃r .C
Output B v ∃r .A A v C

NF6 Input B v C1 u . . . u Cn
Output B v C1 . . . B v Cn

Uli Sattler DL: EL 13

What is EL? Normalisation Reasoning

The normalisation rules

C(i) D arbitrary concepts
C(i) D complex concepts
B concept name
A fresh concept name

NF1 Input C ≡ D
Output C v D D v C

NF2 Input C v D
Output C v A A v D

NF3 Input ∃r .C v D
Output C v A ∃r .A v D

NF4 Input C1 u . . . u Ci u . . . u Cn v D
Output Ci v A C1 u . . . u A u . . . u Cn v D

NF5 Input B v ∃r .C
Output B v ∃r .A A v C

NF6 Input B v C1 u . . . u Cn
Output B v C1 . . . B v Cn

Uli Sattler DL: EL 13

What is EL? Normalisation Reasoning

The normalisation rules

C(i) D arbitrary concepts
C(i) D complex concepts
B concept name
A fresh concept name

NF1 Input C ≡ D
Output C v D D v C

NF2 Input C v D
Output C v A A v D

NF3 Input ∃r .C v D
Output C v A ∃r .A v D

NF4 Input C1 u . . . u Ci u . . . u Cn v D
Output Ci v A C1 u . . . u A u . . . u Cn v D

NF5 Input B v ∃r .C
Output B v ∃r .A A v C

NF6 Input B v C1 u . . . u Cn
Output B v C1 . . . B v Cn

Uli Sattler DL: EL 13

What is EL? Normalisation Reasoning

The normalisation procedure

Given TBox T , apply NF1–NF7 axiom-wise until none can be applied

The result T ′ contains new concept names A1, . . . ,Ak

is of size linear in the size of T
is “equivalent” to T ...

Lemma
For every model I |= T , there is a model J |= T ′

such that XJ = XI for all X /∈ {A1, . . . ,Ak}.
For every model J |= T ′, it holds that I |= T .

Consequence: T ′ is equivalent to T w.r.t. subsumption:
T |= C v D iff T ′ |= C v D
for all C ,D that don’t use the Ai

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]

Uli Sattler DL: EL 14

What is EL? Normalisation Reasoning

The normalisation procedure

Given TBox T , apply NF1–NF7 axiom-wise until none can be applied

The result T ′ contains new concept names A1, . . . ,Ak

is of size linear in the size of T
is “equivalent” to T ...

Lemma
For every model I |= T , there is a model J |= T ′

such that XJ = XI for all X /∈ {A1, . . . ,Ak}.
For every model J |= T ′, it holds that I |= T .

Consequence: T ′ is equivalent to T w.r.t. subsumption:
T |= C v D iff T ′ |= C v D
for all C ,D that don’t use the Ai

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]

Uli Sattler DL: EL 14

What is EL? Normalisation Reasoning

The normalisation procedure

Given TBox T , apply NF1–NF7 axiom-wise until none can be applied

The result T ′ contains new concept names A1, . . . ,Ak

is of size linear in the size of T
is “equivalent” to T ...

Lemma
For every model I |= T , there is a model J |= T ′

such that XJ = XI for all X /∈ {A1, . . . ,Ak}.
For every model J |= T ′, it holds that I |= T .

Consequence: T ′ is equivalent to T w.r.t. subsumption:
T |= C v D iff T ′ |= C v D
for all C ,D that don’t use the Ai

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]

Uli Sattler DL: EL 14

What is EL? Normalisation Reasoning

The normalisation procedure

Given TBox T , apply NF1–NF7 axiom-wise until none can be applied

The result T ′ contains new concept names A1, . . . ,Ak

is of size linear in the size of T
is “equivalent” to T ...

Lemma
For every model I |= T , there is a model J |= T ′

such that XJ = XI for all X /∈ {A1, . . . ,Ak}.
For every model J |= T ′, it holds that I |= T .

Consequence: T ′ is equivalent to T w.r.t. subsumption:
T |= C v D iff T ′ |= C v D
for all C ,D that don’t use the Ai

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]

Uli Sattler DL: EL 14

What is EL? Normalisation Reasoning

The normalisation procedure

Given TBox T , apply NF1–NF7 axiom-wise until none can be applied

The result T ′ contains new concept names A1, . . . ,Ak

is of size linear in the size of T
is “equivalent” to T ...

Lemma
For every model I |= T , there is a model J |= T ′

such that XJ = XI for all X /∈ {A1, . . . ,Ak}.
For every model J |= T ′, it holds that I |= T .

Consequence: T ′ is equivalent to T w.r.t. subsumption:
T |= C v D iff T ′ |= C v D
for all C ,D that don’t use the Ai

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]Uli Sattler DL: EL 14

What is EL? Normalisation Reasoning

And now . . .

1 What is EL?

2 Normalisation

3 A simple poly-time reasoning algorithm

Uli Sattler DL: EL 15

What is EL? Normalisation Reasoning

Initial assumptions

Input: TBox T , concept names A,B
Question: does T |= A v B hold?

Assumption of A,B being concept names is no real restriction:

T |= C v D
m

T ∪ {A ≡ C , B ≡ D} |= A v B

Uli Sattler DL: EL 16

What is EL? Normalisation Reasoning

Deciding subsumptions via subsumer sets
Subsumer of A: a concept name B (or >) with T |= A v B
Subsumer set S(A): set that contains subsumers of A

Representation of subsumer sets: in a labelled graph G(T)

Nodes of G(T) = concept names (or >) in T
Label of node A: S(A)

B ∈ S(A) means T |= A v B
Label of edge (A,B): set R(A,B) of roles

r ∈ R(A,B) means T |= A v ∃r .B

Outline of the procedure:
1 Set S(A) = {A,>} for every A
2 Monotonically build G(T)

by exhaustively applying completion rules
3 Check whether B ∈ S(A) to determine whether T |= A v B

Uli Sattler DL: EL 17

What is EL? Normalisation Reasoning

Deciding subsumptions via subsumer sets
Subsumer of A: a concept name B (or >) with T |= A v B
Subsumer set S(A): set that contains subsumers of A

Representation of subsumer sets: in a labelled graph G(T)

Nodes of G(T) = concept names (or >) in T
Label of node A: S(A)

B ∈ S(A) means T |= A v B
Label of edge (A,B): set R(A,B) of roles

r ∈ R(A,B) means T |= A v ∃r .B

Outline of the procedure:
1 Set S(A) = {A,>} for every A
2 Monotonically build G(T)

by exhaustively applying completion rules
3 Check whether B ∈ S(A) to determine whether T |= A v B

Uli Sattler DL: EL 17

What is EL? Normalisation Reasoning

Deciding subsumptions via subsumer sets
Subsumer of A: a concept name B (or >) with T |= A v B
Subsumer set S(A): set that contains subsumers of A

Representation of subsumer sets: in a labelled graph G(T)

Nodes of G(T) = concept names (or >) in T
Label of node A: S(A)

B ∈ S(A) means T |= A v B
Label of edge (A,B): set R(A,B) of roles

r ∈ R(A,B) means T |= A v ∃r .B

Outline of the procedure:
1 Set S(A) = {A,>} for every A
2 Monotonically build G(T)

by exhaustively applying completion rules
3 Check whether B ∈ S(A) to determine whether T |= A v B

Uli Sattler DL: EL 17

What is EL? Normalisation Reasoning

The completion rules

R1 If A1 u . . . u An v B ∈ T
and A1, . . . ,An ∈ S(X) but B 6∈ S(X)

then add B to S(X)

R2 If A v ∃r .B ∈ T
and A ∈ S(X) but r 6∈ R(X ,B)

then add r to R(X ,B)

R3 If ∃r .A v B ∈ T
and r ∈ R(X ,Y) and A ∈ S(Y) but B 6∈ S(X)

then add B to S(X)

Uli Sattler DL: EL 18

What is EL? Normalisation Reasoning

The completion rules

R1 If A1 u . . . u An v B ∈ T
and A1, . . . ,An ∈ S(X) but B 6∈ S(X)

then add B to S(X)

R2 If A v ∃r .B ∈ T
and A ∈ S(X) but r 6∈ R(X ,B)

then add r to R(X ,B)

R3 If ∃r .A v B ∈ T
and r ∈ R(X ,Y) and A ∈ S(Y) but B 6∈ S(X)

then add B to S(X)

Uli Sattler DL: EL 18

What is EL? Normalisation Reasoning

The completion rules

R1 If A1 u . . . u An v B ∈ T
and A1, . . . ,An ∈ S(X) but B 6∈ S(X)

then add B to S(X)

R2 If A v ∃r .B ∈ T
and A ∈ S(X) but r 6∈ R(X ,B)

then add r to R(X ,B)

R3 If ∃r .A v B ∈ T
and r ∈ R(X ,Y) and A ∈ S(Y) but B 6∈ S(X)

then add B to S(X)

Uli Sattler DL: EL 18

What is EL? Normalisation Reasoning

The “naïve” subsumption algorithm [Baader et al. 2006]

Algorithm 1
Input: EL ontology T
Output: S(.) such that T |= A v B iff B ∈ S(A)

T ′ := Normalise(T) % by applying NF1 - NF6 exhaustively

Initialise graph for T ′:
For each concept name A in T ′ (or >)

create a node A with S(A) := {A,>}
set all edge labels R(X ,Y) := ∅

Exhaustively apply rules R1-R3 to graph
Output resulting graph

Uli Sattler DL: EL 19

What is EL? Normalisation Reasoning

Exercise

Let’s apply the normalisation procedure to the TBox

T = { A v B u ∃r .C ,
C v ∃s.D ,

∃r .∃s.> u B v D }

and then check whether it entails

A v D.

Uli Sattler DL: EL 20

What is EL? Normalisation Reasoning

Summary
Algorithm 1 . . .

terminates in time polynomial in the size of T
constructs a canonical model of T
is sound and complete: outputs yes iff T |= A v B
is one pass (all subsumptions in 1 pass)
is still slow for big ontologies:
...search for applicable rules over 100K concept names/nodes

Smarter versions of Algorithm 1 . . .
are goal-oriented, “one-pass”
are implemented in the reasoners CEL, JCEL, ... for the
extension EL++

can be extended even to the Horn fragment of SHIQ

For details see [Baader et al. 2005, Baader et al. 2006, Kazakov 2009].
Uli Sattler DL: EL 21

References: links

Bio-medical ontologies
SNOMED, the systematized nomenclature of human and
veterinary medicine

http://en.wikipedia.org/wiki/SNOMED_CT

GALEN http://www.opengalen.org

GO, the Gene Ontology http://www.geneontology.org

Uli Sattler DL: EL 22

http://en.wikipedia.org/wiki/SNOMED_CT
http://www.opengalen.org
http://www.geneontology.org

References: articles (1)

F. Baader.
Terminological cycles in a description logic with existential restrictions.
In Proc. IJCAI, pages 325–330, 2003.
http://lat.inf.tu-dresden.de/research/papers.html#2003

F. Baader, S. Brandt, and C. Lutz.
Pushing the EL envelope.
In Proc. IJCAI, pages 364–369, 2005.
http://www.ijcai.org/papers/0372.pdf

F. Baader, C. Lutz, and B. Suntisrivaraporn.
Efficient reasoning in EL+.
In Description Logics, volume 189 of CEUR Workshop Proc., 2006.
http://www.ceur-ws.org/Vol-189/submission_8.pdf

Uli Sattler DL: EL 23

http://lat.inf.tu-dresden.de/research/papers.html#2003
http://www.ijcai.org/papers/0372.pdf
http://www.ceur-ws.org/Vol-189/submission_8.pdf

References: articles (2)

S. Brandt.
Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and – what else?
In Proc. ECAI, pages 298–302, 2004.
http://www.cs.man.ac.uk/~sbrandt/papers.html

Y. Kazakov:
Consequence-Driven Reasoning for Horn SHIQ Ontologies.
In Proc. IJCAI, pages 2040–2045, 2009.

B. Suntisrivaraporn.
Optimization and Implementation of Subsumption Algorithms for the
Description Logic EL with Cyclic TBoxes and General Concept Inclusion
Axioms.
Masters thesis, Technische Universität Dresden, Germany, 2005.
http://lat.inf.tu-dresden.de/research/papers.html#2005

Uli Sattler DL: EL 24

http://www.cs.man.ac.uk/~sbrandt/papers.html
http://lat.inf.tu-dresden.de/research/papers.html#2005

What has been left out

• Loads of complexity results

• Other complexity measures

– data complexity, relevant for OBDA – see Misha’s course on Thursday!

– average case

• Other (reasoner) performance considerations

– what makes reasoning hard: size, tree-width

– robustness

– robustness under (small) changes to O & performance homo/heterogeneity

• Other reasoning problems

– module extraction and inseparability

– decomposition of ontologies

– entailment explanation and justifications

Ask us for pointers, or look at Thomas Schneider & my ESSLLI 2012 course notes
University of
Manchester

66

Thank you for your attention!

University of
Manchester

67

	Appendix

