Computational Complexity of Description Logics: a Friendly Introduction to Some Interesting Phenomena

Uli Sattler
Warm up

Which of the following subsumptions hold?

1. \(\exists r. (A \land B) \subseteq \exists r. A \)

2. \(\exists r. A \land \forall r. B \subseteq \exists r. B \)

3. \(\forall r. (A \land \neg A) \subseteq \forall r. B \)

4. \(\exists r. (\forall r. A) \subseteq \exists r. (\exists r. (A \lor \neg A)) \)

5. \(\forall r. (A \land B) \subseteq \forall r. A \land \forall r. B \)

6. \(\exists r. B \subseteq \forall r. A \)
• we will discuss a lot of things
• but also leave out a lot
• …please ask if you have a question!
Reminder: Standard DL Reasoning Problems

Given an ontology $\mathcal{O} = (\mathcal{T}, \mathcal{A})$,

- is \mathcal{O} consistent? $\mathcal{O} \models \top \subseteq \bot$?
- is \mathcal{O} coherent? is there concept name A with $\mathcal{O} \models A \subseteq \bot$?
- compute concept hierarchy! for all concept names A, B: $\mathcal{O} \models A \subseteq B$?
- classify individuals! for all concept names A, individual names b: $\mathcal{O} \models b : B$?

Theorem 1 Let \mathcal{O} be an ontology and a an individual name not in \mathcal{O}. Then

1. C is satisfiable w.r.t. \mathcal{O} iff $\mathcal{O} \cup \{a : C\}$ is consistent
2. \mathcal{O} is coherent iff, for each concept name A, $\mathcal{O} \cup \{a : A\}$ is consistent
3. $\mathcal{O} \models A \subseteq B$ iff $\mathcal{O} \cup \{a : (A \cap \neg B)\}$ is not consistent
4. $\mathcal{O} \models b : B$ iff $\mathcal{O} \cup \{b : \neg B\}$ is not consistent

⇒ a decision procedure for consistency decides all standard DL reasoning problems
• A problem is a set $P \subseteq M$
 – e.g., M is the set of all \mathcal{ALC} ontologies,
 – $P \subseteq M$ is the set of all consistent \mathcal{ALC} ontologies
 – ...and the problem P is to decide whether, for a given $m \in M$, we have $m \in P$

• An algorithm is a decision procedure for a problem $P \subseteq M$ if it is
 – sound for P: if it answers "$m \in P$", then $m \in P$
 – complete for P: if $m \in P$, then it answers "$m \in P"
 – terminating: it stops after finitely many steps on any input $m \in M$

Why does "sound and complete" not suffice for being a decision procedure?
Earlier: Anni explained a tableau algorithm for \textit{ALC}

\begin{itemize}
 \item Input: \textit{ALC} TBox T, \textit{ALC} concept name C
 \item Output: “yes” if C is satisfiable wrt. T
 \item “no” if not
\end{itemize}

Is this algorithm

- sound?
- complete?
- terminating?
- …and how long does it run?
Lemma 1: Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be an \mathcal{ALC} ontology in NNF. Then

1. the algorithm terminates when applied to \mathcal{T} and \mathcal{C}
2. if the rules generate a complete & clash-free ABox, then \mathcal{C} is satisfiable wrt. \mathcal{T}
3. if \mathcal{C} is satisfiable wrt. \mathcal{T}, then the rules generate a clash-free & complete ABox

Corollary 1:

1. Our tableau algorithm decides satisfiability of \mathcal{ALC} concepts wrt. TBoxes.
2. Satisfiability of \mathcal{ALC} concepts (no TBox!) is decidable in PSpace.
3. Satisfiability of \mathcal{ALC} concepts wrt. TBoxes is decidable in ExpSpace.
4. \mathcal{ALC} concepts have the finite model property
 i.e., every consistent ontology has a finite model.
5. \mathcal{ALC} concepts have the tree model property
 i.e., every consistent ontology has a tree model.
If we start the algorithm with \(\{a : C\} \) to test satisfiability of \(C \), and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox and re-use space for branches already visited, mark \(b : \exists R.C \in A \) with “todo” or “done”

we can run tableau algorithm (even without blocking) in polynomial space:

- ABox is of depth bounded by \(|C| \), and
- we keep only a single branch in memory at any time.
Regarding Corollary 1.3

If we start the algorithm with \(\{ a : C \} \) and \(T \) to test satisfiability of \(C \) wrt. \(T \), and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox

we can run tableau algorithm in exponential space:

- number of individuals in ABox is bounded by \(2^{\#_{\text{sub}}(T)} \)

This is not optimal: consistency of \(\mathcal{ALC} \) ontologies is decidable in exponential time, in fact ExpTime-complete.
The tableau algorithm presented here

→ \textit{decides} consistency of \mathcal{ALC} ontologies, and thus also
→ all other standard reasoning problems
→ uses \textit{blocking} to ensure termination, and
→ can be implemented as such or
 using a \textit{non-deterministic} alternative for the \sqcap-rule and backtracking.
→ uses P/Exp-Space
→ can be implemented in various ways,
 – order/priorities of rules
 – data structure
 – etc.
→ is amenable to optimisations...
Implementing the \mathcal{ALC} Tableau Algorithm

Naive implementation of \mathcal{ALC} tableau algorithm is doomed to failure:

It constructs a
- set of ABoxes,
- each ABox being of possibly exponential size, with possibly exponentially many individuals (see binary counting example)
- in the presence of a GCI such as $\top \sqsubseteq (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)$ and exponentially many individuals, algorithm might generate double exponentially many ABoxes

\Rightarrow requires double exponential space or

- use non-deterministic variant and backtracking to consider one ABox at a time

\Rightarrow requires exponential space
Implementing the \mathcal{ALC} Tableau Algorithm

Optimisations are crucial
corn, every aspect of the algorithm
help in “many” cases (which?)
are implemented in various DL reasoners
e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations
Reasoners provides service “classify all concept names in T”, i.e., for all concept names C, D in T, reasoner decides does $T \models C \sqsubseteq D$?

\leadsto test consistency of $T \cup \{a: (C \cap \neg D)\}$

$\leadsto n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept C into hierarchy computed so far
Reasoners provides service “classify all concept names \mathcal{T}”, i.e., for all concept names C, D in \mathcal{T}, reasoner decides does $\mathcal{T} \models C \sqsubseteq D$?

\Rightarrow test consistency of $\mathcal{T} \cup \{a : (C \cap \neg D)\}$

$\Rightarrow n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying $TBox$

Idea 1: “trickle” new concept C into hierarchy computed so far
Reasoners provides service “classify all concept names \mathcal{T}”, i.e., for all concept names C, D in \mathcal{T}, reasoner decides does $\mathcal{T} \models C \sqsubseteq D$?

\leadsto test consistency of $\mathcal{T} \cup \{a : (C \sqcap \neg D)\}$

$\leadsto n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 1: “trickle” new concept C into hierarchy computed so far
Reasoners provides service "classify all concept names T", i.e.,
for all concept names C, D in T, reasoner decides does $T \models C \sqsubseteq D$?
\iff test consistency of $T \cup \{ a : (C \sqcap \neg D) \}$
$\iff n^2$ consistency tests!

Goal: reduce number of consistency tests when classifying TBox

Idea 2:
- maintain graph with a node for each concept name
- edges representing subsumption, disjointness ($T \models A \sqsubseteq \neg B$), and non-subsumption
- initialise graph with all “obvious” information in T
- to avoid testing subsumption, exploit
 - all info in ABox during tableau algorithm to update graph
 - transitivity of subsumption and its interaction with disjointness
Optimising the ALC Tableau Algorithm: Absorption

Remember: for $T = \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n \}$, each individual x will have n disjunctions $x: (\neg C_i \sqcup D_i)$ due to

GCI-rule: if $T = \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n \}$ replace \mathcal{A} with $\mathcal{A} \cup \{ a: (\neg C_1 \sqcup D_1) \cap (\neg C_2 \sqcup D_2) \cap \ldots \cap (\neg C_n \sqcup D_n) \}$

Problem: high degree of choice and huge search space blows up set of ABoxes...we can do better:

2GCI-rule: if $C \sqsubseteq D \in T$, a is not blocked, and if C is a concept name, $a: C \in \mathcal{A}$ but $a: D \not\in \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{ a: D \}$

else if $a: (\neg C \sqcup D) \not\in \mathcal{A}$ for a in \mathcal{A}, replace \mathcal{A} with $\mathcal{A} \cup \{ a: (\neg C \sqcup D) \}$

Problem: still possibly high degree of choice and huge search space...
Observation: many GCIs are of the form $A \sqcap \ldots \sqsubseteq C$ for concept name A

e.g., Human $\sqcap \ldots \sqsubseteq C$ or Device $\sqcap \ldots \sqsubseteq C$

Idea: localise GCIs to concept names by transforming

$A \sqcap X \sqsubseteq C$ into equivalent $A \sqsubseteq \neg X \sqcup C$

e.g., Human $\sqcap \exists \text{owns}.Pet \sqsubseteq C$ becomes Human $\sqsubseteq \neg \exists \text{owns}.Pet \sqcup C$

For “absorbed” $T = \{ A_i \sqsubseteq D_i \mid 1 \leq i \leq n_1 \} \cup \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n_2 \}$

the second, non-deterministic choice in GCI-rule is taken only n_2 times.

2GCI-rule: if $C \sqsubseteq D \in T$, a is not blocked, and

if C is a concept name, $a : C \in \mathcal{A}$ but $a : D \notin \mathcal{A}$,

replace \mathcal{A} with $\mathcal{A} \cup \{ a : D \}$

else if $a : (\neg C \sqcup D) \notin \mathcal{A}$ for a in \mathcal{A},

replace \mathcal{A} with $\mathcal{A} \cup \{ a : (\neg C \sqcup D) \}$
Optimising the \textit{ALC} Tableau Algorithm: Absorption

\textbf{Observation:} many GCIs are of the form $A \sqcap \ldots \sqsubseteq C$ for concept name A

e.g., Human $\sqcap \ldots \sqsubseteq C$ or Device $\sqcap \ldots \sqsubseteq C$

\textbf{Idea:} localise GCIs to concept names by transforming
$$A \sqcap X \sqsubseteq C$$ into equivalent $A \sqsubseteq \neg X \sqcup C$
e.g., Human $\sqcap \exists \text{owns.Pet} \sqsubseteq C$ becomes Human $\sqsubseteq \neg \exists \text{owns.Pet} \sqcup C$

\textbf{Observations:} If no GCI is absorbable, nothing changes
Each absorption saves 1 disjunction per individual outside A_i,
in the best case, this avoids almost all disjunctions from TBox axioms!
Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and
tries other possibility

Example \(x: \exists R. (A \sqcap B) \sqcap ((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)) \sqcap \forall R. \neg A \)
Remember If a clash is encountered, **non-deterministic algorithm backtracks**
i.e., returns to last non-deterministic choice and tries other possibility

Example $x: \exists R. (A \sqcap B) \sqcap ((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)) \sqcap \forall R. \neg A$

```
\text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{C_1\}} \text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{C_{n-1}\}} \text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{C_n\}} \text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{\neg C_n, D_n\}} \text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{\neg C_2, D_2\}} \text{\textbf{x}} \xrightarrow{\text{\textbf{L}}(x) \cup \{\neg C_1, D_1\}} \text{\textbf{x}}
```

$\text{\textbf{L}}(y) = \{(A \sqcap B), \neg A, A, B\}$ $\text{\textbf{y}}$

Clash
Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and
tries other possibility

Example \(x: \exists R. (A \cap B) \cap ((C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n)) \cap \forall R. \neg A \)
Optimising the \mathcal{ALC} Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

e.g., returns to last non-deterministic choice and
tries other possibility

Example $x : \exists R. (A \sqcap B) \sqcap ((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n)) \sqcap \forall R. \neg A$
Finally: \(\mathcal{ALC} \) extends propositional logic
\[\iff \]\, heuristics developed for SAT are relevant

Summing up: optimisations are possible at each aspect of tableau algorithm
\[\iff \]\, can dramatically enhance performance
\[\iff \]\, do they interact?
\[\iff \]\, how?
\[\iff \]\, which combination works best for which “cases”?
\[\iff \]\, is the optimised algorithm still correct?
... check out ORE 2013 results & our “Robustness” paper at DL 2013
...now for some proper computational complexity...
We have seen 1 algorithm that runs

- in PSpace without a TBox
- in non-deterministic ExpSpace with a TBox

...can we do better? How can we tell? ...perhaps try much harder, think much longer?

...how do we show that our algorithm is *optimal*? And what does that mean anyway?

→ look at complexity...
We distinguish between

- **cognitive complexity:**
 - e.g., how hard is it, for a human, to determine/understand $\mathcal{O} \models C \sqsubseteq D$
 - interesting, little understood topic
 - relevant to provide tool support for ontology engineers

- **computational complexity:**
 - e.g., how much time/space do we need to determine $\mathcal{O} \models C \sqsubseteq D$
 - well understood topic
 - loads of results thanks to relationships DL - FOL - Modal Logic
 - relevant to understand
 - trade-off between expressivity (of a DL) and complexity of reasoning
 - whether a given algorithm is optimal/can be improved
Decision problem:
- is a subset $P \subseteq M$
- e.g., $P =$ the set of consistent \mathcal{ALC} ontologies and $M =$ the set of all \mathcal{ALC} ontologies
- think of it as black box with
 - input $m \in M$
 - output “yes” if $m \in P$
 - “no” if $m \notin P$

(Polynomial) reduction from $P \subseteq M$ to $P' \subseteq M'$ is a (polynomial) function π:
- $\pi : M \longrightarrow M'$
- $m \in P$ iff $\pi(m) \in P'$
- e.g., our translation $t()$ from \mathcal{ALC} to FOL
- e.g., our reduction from subsumption to ontology consistency
Decision problem: • is a subset $P \subseteq M$

• think of it as black box with
 – input $m \in M$
 – output: “yes” if $m \in P$, “no” otherwise

(Polynomial) reduction from $P \subseteq M$ to $P' \subseteq M'$ is a (polynomial) function π:

• $\pi : M \rightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$
Computational Complexity: Decision Problems

Decision problem:
- is a subset $P \subseteq M$
- think of it as **black box** with
 - input $m \in M$
 - output: “yes” if $m \in P$, “no” otherwise

(Polynomial) reduction from $P \subseteq M$ to $P' \subseteq M'$ is a (polynomial) function π:
- $\pi : M \rightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$

Fact: if $P \subseteq M$ is reducible to $P' \subseteq M'$, then P is at most as hard/complex\(^a\) as P' because P can be solved by solving P' via π

\(^a\)Of course only for suitably complex problems.
Computational Complexity

Some standard complexity classes:

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>logarithmic space</td>
<td>graph accessibility</td>
</tr>
<tr>
<td>P</td>
<td>polynomial time</td>
<td>model checking</td>
</tr>
<tr>
<td>NP</td>
<td>nondeterministic pol. time</td>
<td>prop. logic SAT</td>
</tr>
<tr>
<td>PSpace</td>
<td>polynomial space</td>
<td>Q-SAT</td>
</tr>
<tr>
<td>ExpTime</td>
<td>exponential time</td>
<td></td>
</tr>
<tr>
<td>NExpTime</td>
<td>nondeterministic exponential time</td>
<td></td>
</tr>
<tr>
<td>ExpSpace</td>
<td>exponential space</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>undecided</td>
<td></td>
<td>FOL-SAT</td>
</tr>
</tbody>
</table>
To determine that a problem $P \subseteq M$ is

- **in** a complexity class C, it suffices to
 - design/find an algorithm
 - show that it is sound, complete, and terminating, and
 - show that this algorithm runs, for every $m \in M$, in at most C resources
 - ...this algorithm can be a reduction to a problem known to be in C

- **hard for** a complexity class C, we need to
 - find a suitable problem $P' \subseteq M'$ that is known to be hard for C and
 - a reduction $\pi(.)$ from P' to P

- **complete for** a complexity class C, we need to show that it is
 - in C and
 - hard for C
Known Complexity Results so Far:

- We have seen that \mathcal{ALC} concept satisfiability (no TBox) is in PSpace:
 - non-deterministic tableau algorithm runs in polynomial space
 - can be extended to ABoxes
- ✔️ we can’t do better: \mathcal{ALC} satisfiability is PSpace-hard:
 - but proof is a bit cumbersome
 - via a reduction of satisfiability of quantified Boolean formulae
- We have seen that \mathcal{ALC} concept satisfiability w.r.t. TBoxes is in NExpSpace:
 - non-deterministic tableau algorithm runs in exponential space
 - can be extended to ABoxes & ontology consistency
 - can be extended to \mathcal{ALCQI}, \mathcal{ALCQO}, and \mathcal{ALCIO}
- ✔️ we can do better: \mathcal{ALC} satisfiability wrt. TBoxes is ExpTime-complete:
 - but such (optimal) algorithm takes too long for this course
 - as is lower bound/hardness proof
 (via a reduction of the halting problem of polynomial-space-bounded alternating TMs)
Understanding lower bounds/hardness of problems

• tell us when “in principle” improvement of algorithms is futile
• inform us of relationships of logics:
 – who is harder than who?
 – which are of similar difficulty?
• their proofs often
 – reveal interesting model theoretic properties:
 * tree model property: each satisfiable input has a tree-shaped model
 * finite model property: each satisfiable input has a finite model
 – use interesting translations between logics

They don’t always tell us much about “typical” performance...
Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., like this, on all problems of size 7:
Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:
Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:
Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:
Earlier, we have claimed that, for \mathcal{ALC},

- concept satisfiability is in PSpace, but
- concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for \mathcal{ALC}^u, the extension of \mathcal{ALC} with

- universal role u with $u^I = \Delta^I \times \Delta^I$

\Rightarrow concept satisfiability is as hard as reasoning w.r.t. a TBox, namely ExpTime-hard

- this is typical phenomenon where the
 - certain constructors enable us to internalise a TBox
Internalising a TBox

Remember: for $\mathcal{T} = \{C_1 \sqsubseteq D_1, \ldots, C_n \sqsubseteq D_n\}$, we use

$$C_\mathcal{T} = \left(\neg C_1 \sqcup D_1\right) \cap \ldots \cap \left(\neg C_n \sqcup D_n\right)$$

for the universal \mathcal{T} concept that has to hold everywhere.

Reduction: for C a concept and \mathcal{T} a TBox, define

$$\pi(C, \mathcal{T}) = C \cap \forall u. C_\mathcal{T}$$

Lemma: 1. C is satisfiable w.r.t. \mathcal{T} iff the concept $\pi(C, \mathcal{T})$ is satisfiable
2. the size of $\pi(C, \mathcal{T})$ is linear in that of C plus \mathcal{T}

Corollary: satisfiability of \mathcal{ALC}^u concepts is as hard as satisfiability of \mathcal{ALC} concepts w.r.t. TBoxes is, namely ExpTime-hard.
Let’s do that again!
Is concept satisfiability always easier? II

Earlier, we have claimed that, for \(\mathcal{ALC} \),

- concept satisfiability is in PSpace, but
- concept satisfiability w.r.t. a TBox is in ExpTime

Next, we will see that, for \(\mathcal{ALCIO} \), the extension of \(\mathcal{ALC} \) with

- inverse roles \(r^- \) with \((r^-)^I = \{(y, x) \mid (x, y) \in r^I\} \) and
- nominals, i.e., individual names used as concept names

⇒ concept satisfiability is as hard as reasoning w.r.t. a TBox, namely ExpTime-hard

- this is typical phenomenon where the
 - combination of certain constructors enables us to internalise a TBox
Remember: for $\mathcal{T} = \{C_1 \sqsubseteq D_1, \ldots, C_n \sqsubseteq D_n\}$, we use

$$C_\mathcal{T} = (\neg C_1 \sqcup D_1) \cap \ldots \cap (\neg C_n \sqcup D_n)$$

for the universal \mathcal{T} concept that has to hold everywhere.

Reduction: for C a concept and \mathcal{T} a TBox, define

$$\pi(C, \mathcal{T}) = C \cap C_\mathcal{T} \cap \exists p. (\{o\} \cap \forall p^-. (\bigcap_r \forall r. (\exists p. \{o\} \cap C_\mathcal{T})))$$

Lemma: 1. C is satisfiable w.r.t. \mathcal{T} iff the concept $\pi(C, \mathcal{T})$ is satisfiable

2. The size of $\pi(C, \mathcal{T})$ is linear in that of C plus \mathcal{T}

Corollary: satisfiability of \textit{ALCIO} concepts is as hard as satisfiability of \textit{ALCIO} concepts w.r.t. TBoxes, namely ExpTime-hard.
Earlier, we have claimed that \textit{ALCQI}, \textit{ALCQO}, and \textit{ALCIo} are all ExpTime-complete, i.e., as hard/easy as \textit{ALC}.

Next, we will see that consistency of \textit{ALCQIO} ontologies, the extension of \textit{ALC} with

- inverse roles r^{-} with $(r^{-})^I = \{(y, x) \mid (x, y) \in r^I\}$
- number restrictions, in fact functionality restrictions ($\leq 1r^\top$) and
- nominals, i.e., individual names used as concept names

\Rightarrow is harder, namely \textit{NExpTime}-hard.

- this is typical phenomenon where
 - combination of otherwise harmless constructors
 leads to increased complexity
We follow our hardness proof recipe:

- to show that consistency of ALCQIO ontologies is NExpTime-hard, we
 - find a suitable problem $P' \subseteq M'$ that is known to be NExpTime-hard and
 - a reduction from P' to ALCQIO consistency

The NExpTime version of the domino problem
Definition: A domino system $\mathcal{D} = (D, H, V)$

- set of domino types $D = \{D_1, \ldots, D_d\}$, and
- horizontal and vertical matching conditions

 $H \subseteq D \times D$ and $V \subseteq D \times D$

A tiling for \mathcal{D} is a function:

$$t : \mathbb{N} \times \mathbb{N} \rightarrow D$$

such that

$$\langle t(m, n), t(m + 1, n) \rangle \in H \quad \text{and} \quad \langle t(m, n), t(m, n + 1) \rangle \in V$$

Domino problems: classical given \mathcal{D}, does \mathcal{D} have a tiling?

\Rightarrow well-known that this problem is undecidable [Berger66]

NexpTime given \mathcal{D}, does \mathcal{D} have a tiling for $2^n \times 2^n$ square?

\Rightarrow well-known that this problem is NExpTime-hard
To reduce the NExpTime domino problem to ALCQIO consistency, we need to

- define a mapping $\pi(.)$ from domino problems to ALCQIO ontologies such that

 D has an $2^n \times 2^n$ mapping iff $\pi(D)$ is consistent
 and
 size of $\pi(D)$ is polynomial in n
Elements in models of $\pi(D)$ will stand for points in the grid, i.e., (m, n)...

We can express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

1. each element carries exactly one domino type D_i

 \Rightarrow use concept name D_i for each domino type and

 $$\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \quad \text{% each element carries a domino type}$$
 $$D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d \quad \text{% but not more than one}$$
 $$D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d \quad \text{% ...}$$
 $$\vdots$$
 $$D_{d-1} \sqsubseteq \neg D_d$$
Mapping a Domino System into an \textit{ALCQIO} Ontology

2. every element has a horizontal (X-) successor and a vertical (Y-) successor

$$\top \subseteq \exists X.\top \cap \exists Y.\top$$

3. every element satisfies D's horizontal/vertical matching conditions:

$$D_1 \subseteq \bigcup_{(D_1, D) \in H} \forall X. D \cap \bigcup_{(D_1, D) \in V} \forall Y. D$$

$$D_2 \subseteq \bigcup_{(D_2, D) \in H} \forall X. D \cap \bigcup_{(D_2, D) \in V} \forall Y. D$$

$$\vdots$$

$$D_d \subseteq \bigcup_{(D_d, D) \in H} \forall X. D \cap \bigcup_{(D_d, D) \in V} \forall Y. D$$

Does this suffice?
I.e., does D have a $2^n \times 2^n$ tiling iff one D_i is satisfiable w.r.t. 1 to 3?

- if yes, we have shown that satisfiability of \textit{ALC} is NExpTime-hard
- so no...what is missing?
Two things are missing:

1. the model must be large enough, namely $2^n \times 2^n$ and
2. for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

This will be addressed using a “counting and binding together” trick ...
Mapping a Domino System into an \textit{ALCQIO} Ontology

(1) counting and binding together

(a) use $A_1, \ldots, A_n, B_1, \ldots, B_n$ as “bits” for binary representation of grid position
e.g., $(010, 011)$ is represented by an instance of $\neg A_3, A_2, \neg A_1, \neg B_3, B_2, B_1$

write GCI to ensure that X- and Y-successors are \textit{incremented correctly}
e.g., X-successor of $(010, 011)$ is $(011, 011)$
e.g., Y-successor of $(010, 011)$ is $(010, 100)$

(b) use a nominal to ensure that there is only one $(111\ldots 1, 111\ldots 1)$
this implies, with $\top \sqsubseteq (\leq 1 \ X\neg. \top) \cap (\leq 1 \ Y\neg. \top)$ \textit{uniqueness} of grid positions
Mapping a Domino System into an **ALCQIO** Ontology

4. counting and binding together

(a) \(\tilde{A}_i\) for “bit \(A_i\) is incremented correctly”:

\[
\begin{align*}
\top & \subseteq \tilde{A}_1 \cap \ldots \cap \tilde{A}_n \\
\tilde{A}_1 & \subseteq (A_1 \cap \forall X.\neg A_1) \cup (\neg A_1 \cap \forall X.A_1) \\
\tilde{A}_i & \subseteq (\cap_{\ell<i} A_\ell \cap ((A_i \cap \forall X.\neg A_i) \cup (\neg A_i \cap \forall X.A_i)) \cup \\
& \quad (\neg \cap_{\ell<i} A_\ell \cap ((A_i \cap \forall X.A_i) \cup (\neg A_i \cap \forall X.\neg A_i))
\end{align*}
\]

(b) ensure uniqueness of grid positions:

\[
A_1 \cap \ldots \cap A_n \cap B_1 \cap \ldots \cap B_n \subseteq \{o\} \quad \% \text{top right } (2^n, 2^n) \text{ is unique} \\
\top \subseteq (\leq 1 X^-.\top) \cap (\leq 1 Y^-.\top) \quad \% \text{everything else is also unique}
\]
Reduction of NExpTime Domino Problem to $ALCQIO$ Consistency

Lemma: let $\pi(D)$ be ontology consisting of all axioms mentioned in ①-④:

- D has an $2^n \times 2^n$ tiling iff $\pi(D)$ is consistent
- size of $\pi(D)$ is polynomial (quadratic) in
 - the size of D and
 - n

Since the NExpTime-domino problem is NExpTime-hard, this implies
consistency of $ALCQIO$ is also NExpTime-hard:

if we could solve consistency of $ALCQIO$ in, say, ExpTime,
this would allow us to solve the domino problem also in ExpTime via $\pi(.)$
Let’s do this again!
Are all DLs decidable?

So far, we have extended ALC with
- inverse role and
- number restrictions
- ...which resulted in logics whose reasoning problems are **decidable**
- ...we even discussed **decision procedures** for these extensions

Next, we will discuss some undecidable extension
- ALC with role chain inclusions
- ALC with number restrictions on complex roles
OWL 2 supports axioms of the form

- $r \sqsubseteq s$: a model of \mathcal{O} with $r \sqsubseteq s \in \mathcal{O}$ must satisfy $r^I \subseteq s^I$
- $\text{trans}(r)$: a model of \mathcal{O} with $\text{trans}(r) \in \mathcal{O}$ must satisfy $r^I \circ r^I \subseteq r^I$, where $p \circ q = \{(x, z) \mid \text{there is } y : (x, y) \in p \text{ and } (y, z) \in q\}$, i.e., a model \mathcal{I} of \mathcal{O} must interpret r as a transitive relation
- $r \circ s \sqsubseteq t$: a model of \mathcal{O} with $r \circ s \sqsubseteq t \in \mathcal{O}$ must satisfy $r^I \circ s^I \subseteq t^I$

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to **loss of tree model property and undecidability**
How to prove undecidability of a DL

Similar to hardness results, we prove undecidability of a DL as follows:

1. **fix reasoning problem**, e.g., satisfiability of a concept w.r.t. a TBox
 - remember Theorem 1?
 - if concept satisfiability w.r.t. TBox is undecidable,
 - then so is consistency of ontology
 - then so is subsumption w.r.t. TBox
 - ...

2. **pick a decision problem known to be undecidable**, e.g., the domino problem

3. **provide a (computable) mapping** $\pi(\cdot)$ that
 - takes an instance D of the domino problem and
 - turns it into a concept A_D and a TBox \mathcal{T}_D such that
 - D has a tiling if and only if A_D is satisfiable w.r.t. \mathcal{T}_D

 i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as a decision procedure for the domino problem
The Classical Domino Problem

D, a fixed set of dominoe types

can we tile the first quadrant using D?
The Classical Domino Problem

Definition: A domino system \(\mathcal{D} = (D, H, V) \)

- set of domino types \(D = \{D_1, \ldots, D_d\} \), and
- horizontal and vertical matching conditions \(H \subseteq D \times D \) and \(V \subseteq D \times D \)

A tiling for \(\mathcal{D} \) is a (total) function:

\[
t : \mathbb{N} \times \mathbb{N} \rightarrow D \text{ such that } \\
\langle t(m, n), t(m + 1, n) \rangle \in H \text{ and } \\
\langle t(m, n), t(m, n + 1) \rangle \in V
\]

Domino problem: given \(\mathcal{D} \), has \(\mathcal{D} \) a tiling?

It is well-known that this problem is undecidable [Berger66]
Almost Encoding the Classical Domino Problem in \mathcal{ALC}

We have already see how to express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

① each element carries exactly one domino type D_i

\Leftrightarrow use unary predicate symbol D_i for each domino type and

\[
\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \quad \% \text{each element carries a domino type}
\]
\[
D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d \quad \% \text{but not more than one}
\]
\[
D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d \quad \% \ldots
\]
\[
\vdots \quad \vdots
\]
\[
D_{d-1} \subseteq \neg D_d
\]
Almost Encoding the Classical Domino Problem in \mathcal{ALC}

2. every element has a horizontal (X-) successor and a vertical (Y-) successor

\[\top \subseteq \exists X. \top \land \exists Y. \top \]

3. every element satisfies D’s horizontal/vertical matching conditions:

\[
\begin{align*}
D_1 \subseteq & \quad \bigcup_{(D_1,D) \in H} \forall X. D \land \bigcup_{(D_1,D) \in V} \forall Y. D \\
D_2 \subseteq & \quad \bigcup_{(D_2,D) \in H} \forall X. D \land \bigcup_{(D_2,D) \in V} \forall Y. D \\
\vdots & \quad \vdots \\
D_d \subseteq & \quad \bigcup_{(D_d,D) \in H} \forall X. D \land \bigcup_{(D_d,D) \in V} \forall Y. D
\end{align*}
\]

Does this suffice?

No, we know that it doesn’t!
for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors & vice versa

\[X \circ Y \sqsubseteq Y \circ X \quad \text{and} \quad Y \circ X \sqsubseteq X \circ Y \]

Lemma: Let \(\mathcal{T}_D \) be the axioms from ① to ④.
Then \(\top \) is satisfiable w.r.t. \(\mathcal{T}_D \) iff \(D \) has a tiling.

- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of \(\mathcal{ALC} \) with role chain inclusions
- due to Theorem 1, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for \(D \), you can construct a model of \(\mathcal{T}_D \)
 2. show that, from a model \(\mathcal{I} \) of \(\mathcal{T}_D \), you can construct a tiling for \(D \) (tricky because elements in \(\mathcal{I} \) can have several \(X \)- or \(Y \)-successors but we can simply take the right ones...
Let's do this again!
What other constructors can us help to express obligation \(\mathfrak{O} \)?

- **counting and complex roles (role chains and role intersection):**
 \[
 \top \sqsubseteq (\leq 1x.\top) \cap (\leq 1y.\top) \cap (\exists (x \circ y) \cap (y \circ x).\top)
 \]
- **restricted role chain inclusions (only 1 role on RHS), and counting on non-simple roles:**
 \[
 \begin{align*}
 \top & \sqsubseteq (\leq 1x.\top) \cap (\leq 1y.\top) \\
 x \circ y & \sqsubseteq r \\
 y \circ x & \sqsubseteq r \\
 \top & \sqsubseteq (\leq 1r.\top)
 \end{align*}
 \]
- **various others...**
Are all DLs hard/intractable?

Let’s see a less complex DL: \mathcal{EL}
Thanks to Thomas Schneider, University of Bremen: he made the originals of these slides, which I borrowed and slightly modified.
Are all DLs intractable?

1. What is \mathcal{EL}?

2. Normalisation

3. A simple poly-time reasoning algorithm
And now . . .

1. What is \mathcal{EL}?

2. Normalisation

3. A simple poly-time reasoning algorithm
Summary

\(\mathcal{EL} \) is a restriction of \(\mathcal{ALC} \) that . . .

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,

 i.e., there is a worst-case polynomial-time algorithm for deciding subsumption etc.
Summary

\(\mathcal{EL}\) is a restriction of \(\mathcal{ALC}\) that . . .

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,
 i.e., there is a worst-case polynomial-time algorithm for
deciding subsumption etc.
- can be extended to \(\mathcal{EL}^{++}\) with other features, without
increase in complexity:
 \[
 \bot \\
 \text{disjoint concepts}
 \text{domain and range restrictions}
 \text{concept and role assertions}
 \text{nominals}
 \text{transitive roles, reflexive roles}
 \text{concrete domains}
 \[

Uli Sattler

DL: \(\mathcal{EL}\)
Summary

\(\mathcal{EL}\) is a restriction of \(\mathcal{ALC}\) that . . .

- allows only conjunction and existential restrictions
- is at the heart of OWL 2 EL
- whose standard reasoning problems are in PTime, i.e.,
 - i.e., there is a worst-case polynomial-time algorithm for deciding subsumption etc.
- can be extended to \(\mathcal{EL}^{++}\) with other features, without increase in complexity:
 - \(\bot\) (domain and range restrictions)
 - disjoint concepts (concept and role assertions)
 - role (chain) inclusions (nominals)
 - transitive roles, reflexive roles (concrete domains)
- whose extension with inverse roles or counting increases complexity to that of \(\mathcal{ALC}\)
Syntax and semantics of \mathcal{EL}

Concepts

For C, D concepts and R a role name:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>\top</td>
<td></td>
<td>Δ^I</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
<td>Human \sqcap Male</td>
<td>$C^I \cap D^I$</td>
</tr>
<tr>
<td>exist. restr.</td>
<td>$\exists r.C$</td>
<td>\existshasChild.Human</td>
<td>${x \mid \exists y.(x, y) \in r^I \land y \in C^I}$</td>
</tr>
</tbody>
</table>

Axioms

- $C \sqsubseteq D$
- $C \equiv D$ as a shortcut for “$C \sqsubseteq D, D \sqsubseteq C$”
What a tiny logic!?

✓ We can say in \mathcal{EL}

Hand $\sqsubseteq \exists \text{hasPart}.\text{Finger}$

✗ but we can’t say

Hand $\sqsubseteq =5 \text{hasPart}.\text{Finger}$
Finger $\sqsubseteq \exists \text{hasPart}.\text{Hand}$
What is \mathcal{EL}?

What a tiny logic!?

- **We can say in \mathcal{EL}**

 Hand \sqsubseteq \exists hasPart.Finger

- **We’d like to say, but can’t**

 MildFlu \equiv Flu \sqcap \forall symptom.\negTriv
 Triv \equiv Cough \sqcup Sneeze. \sqcap Headache
 MildFlu \equiv Flu \sqcap \forall symptom.\negFever

- **but we can’t say**

 Hand \sqsubseteq $=$5 hasPart.Finger
 Finger \sqsubseteq \exists hasPart$^\neg$.Hand

- **all we can say (in \mathcal{EL}^{++}) is**

 MildFlu \sqsubseteq Flu
 Cough \sqsubseteq Triv, Sneeze \sqsubseteq Triv, ...
 MildFlu \sqcap \exists symptom.Fever \sqsubseteq \bot
What is \mathcal{EL}?

What a tiny logic!?

✓ We can say in \mathcal{EL}

Hand $\sqsubseteq \exists \text{hasPart}.\text{Finger}$

✗ We’d like to say, but can’t

MildFlu $\equiv \text{Flu} \sqcap \forall \text{symptom}.\neg \text{Triv}$

Triv $\equiv \text{Cough} \sqcup \text{Sneeze}. \sqcup \text{Headache}$

MildFlu $\equiv \text{Flu} \sqcap \forall \text{symptom}.\neg \text{Fever}$

✗ but we can’t say

Hand $\sqsubseteq =5 \text{hasPart}.\text{Finger}$

Finger $\sqsubseteq \exists \text{hasPart}^{-}.\text{Hand}$

✓ all we can say (in \mathcal{EL}^{++}) is

MildFlu $\sqsubseteq \text{Flu}$

Cough $\sqsubseteq \text{Triv}, \text{Sneeze} \sqsubseteq \text{Triv}, ...$

MildFlu $\sqcap \exists \text{symptom}.\text{Fever} \sqsubseteq \bot$

\mathcal{EL}^{++} is used in some large-scale ontologies, e.g., SNOMED
EL is not so tiny – an example ontology

- Endocardium ⊑ Tissue ⊓ ∃cont-in.HeartWall
 ⊓ ∃cont-in.HeartValve

- HeartWall ⊑ BodyWall ⊓ ∃part-of.Heart

- HeartValve ⊑ BodyValve ⊓ ∃part-of.Heart

- Endocarditis ⊑ Inflammation ⊓ ∃has-loc.Endocardium

- Inflammation ⊑ Disease ⊓ ∃acts-on.Tissue

- Heartdisease ⊓ ∃has-loc.HeartValve ⊑ CriticalDisease

- Heartdisease ⊑ Disease ⊓ ∃has-loc.Heart

Taken from [Baader et al. 2006]
\(\mathcal{EL}(+) \) is not so tiny – an example ontology

\[
\begin{align*}
\text{Endocardium} & \sqsubseteq \text{Tissue} \sqcap \exists \text{cont-in. HeartWall} \sqcap \\
& \quad \exists \text{cont-in. HeartValve} \\\n\text{HeartWall} & \sqsubseteq \text{BodyWall} \sqcap \exists \text{part-of. Heart} \\\n\text{HeartValve} & \sqsubseteq \text{BodyValve} \sqcap \exists \text{part-of. Heart} \\\n\text{Endocarditis} & \sqsubseteq \text{Inflammation} \sqcap \exists \text{has-loc. Endocardium} \\\n\text{Inflammation} & \sqsubseteq \text{Disease} \sqcap \exists \text{acts-on. Tissue} \\\n\text{Heartdisease} & \sqsubseteq \exists \text{has-loc. HeartValve} \sqcap \text{CriticalDisease} \\\n\text{Heartdisease} & \equiv \text{Disease} \sqcap \exists \text{has-loc. Heart} \\\n\end{align*}
\]

\(\mathcal{EL}^+ \) \bigg\{
\begin{align*}
\text{part-of} & \circ \text{part-of} \sqsubseteq \text{part-of} \\
\text{part-of} & \sqsubseteq \text{cont-in} \\
\text{has-loc} & \circ \text{cont-in} \sqsubseteq \text{has-loc}
\end{align*}
\bigg\}

Taken from [Baader et al. 2006]
Satisfiability and subsumption

Satisfiability + coherence are trivial: every \mathcal{EL}-TBox is coherent

because ?
Satisfiability and subsumption

Satisfiability + coherence are trivial: every \(\mathcal{EL} \)-TBox is coherent

- \(\mathcal{I} \) with \(A^\mathcal{I} = \Delta^\mathcal{I} \) and \(r^\mathcal{I} = \Delta^\mathcal{I} \times \Delta^\mathcal{I} \), for all concept names \(A \) and role names \(r \), satisfies every \(\mathcal{EL} \) axiom

- \(\mathcal{I} \) with \(A^\mathcal{I} = r^\mathcal{I} = \emptyset \) doesn’t – **why?**
Satisfiability and subsumption

Satisfiability + coherence are trivial: every \mathcal{EL}-TBox is coherent

- \mathcal{I} with $A^\mathcal{I} = \Delta^\mathcal{I}$ and $r^\mathcal{I} = \Delta^\mathcal{I} \times \Delta^\mathcal{I}$,
 for all concept names A and role names r,
 satisfies every \mathcal{EL} axiom

- (\mathcal{I} with $A^\mathcal{I} = r^\mathcal{I} = \emptyset$ doesn’t – why?)

Subsumption ?
Satisfiability and subsumption

Satisfiability + coherence are trivial: every \mathcal{EL}-TBox is coherent

- \mathcal{I} with $A^\mathcal{I} = \Delta^\mathcal{I}$ and $r^\mathcal{I} = \Delta^\mathcal{I} \times \Delta^\mathcal{I}$, for all concept names A and role names r,
satisfies every \mathcal{EL} axiom
- $(\mathcal{I}$ with $A^\mathcal{I} = r^\mathcal{I} = \emptyset$ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail $A \sqsubseteq B$? $A' \sqsubseteq B'$?

$$\exists r.A \sqsubseteq \exists r.B$$
$$A' \equiv \exists r.\exists r.A$$
$$B' \equiv \exists r.\exists r.B$$
Satisfiability and subsumption

Satisfiability + coherence are trivial: every \mathcal{EL}-TBox is coherent
- \mathcal{I} with $A^\mathcal{I} = \Delta^\mathcal{I}$ and $r^\mathcal{I} = \Delta^\mathcal{I} \times \Delta^\mathcal{I}$, for all concept names A and role names r, satisfies every \mathcal{EL} axiom
- $(\mathcal{I}$ with $A^\mathcal{I} = r^\mathcal{I} = \emptyset$ doesn’t – why?)

Subsumption isn’t:
does the following TBox entail $A \sqsubseteq B$? $A' \sqsubseteq B'$?

$$\exists r. A \sqsubseteq \exists r. B$$

$$A' \equiv \exists r. \exists r. A$$

$$B' \equiv \exists r. \exists r. B$$

Without negation, they are not interreducible: Theorem 1 fails!
An Algorithm for \mathcal{EL} subsumption

Goal: present a decision procedure for subsumption in \mathcal{EL}

Outline:
1. Normalisation procedure
2. Decision procedure
 (simple, naïve, without optimisations)
And now . . .

1. What is \mathcal{EL}?

2. Normalisation

3. A simple poly-time reasoning algorithm
Normal form

...keeps the reasoning procedure simple

Definition
An $\mathcal{E}L$ ontology is in **normal form** if all axioms have these forms:

\[
A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \\
A \sqsubseteq \exists r. B \\
\exists r. A \sqsubseteq B
\]

$A_{(i)}, B$: concepts **names** \quad \quad r: \text{role} \quad \quad n \geq 1$ is an integer
The normalisation procedure

- ... applies **normalisation rules** to axioms in a given TBox \mathcal{T}
- each rule transforms an axiom into one or several shorter ones
- old axiom is removed from \mathcal{T}; new axioms are added
- \leadsto results in an “equivalent” TBox \mathcal{T}'
The normalisation rules

NF1
Input: \(C \equiv D \)
Output: \(C \sqsubseteq D \), \(D \sqsubseteq C \)

NF2
Input: \(C \sqsubseteq D \)
Output: \(C \sqsubseteq A \), \(A \sqsubseteq D \)

\(C(i) \) \(D \) arbitrary concepts
\(C(i) \) \(D \) complex concepts
\(B \) concept name
\(A \) fresh concept name
The normalisation rules

NF1

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \equiv D$</td>
<td>$C \sqsubseteq D$, $D \sqsubseteq C$</td>
</tr>
</tbody>
</table>

NF2

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \sqsubseteq D$</td>
<td>$C \sqsubseteq A$, $A \sqsubseteq D$</td>
</tr>
</tbody>
</table>

NF3

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists r. C \sqsubseteq D$</td>
<td>$C \sqsubseteq A$, $\exists r. A \sqsubseteq D$</td>
</tr>
</tbody>
</table>

NF4

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1 \sqcap \ldots \sqcap C_i \sqcap \ldots \sqcap C_n \sqsubseteq D$</td>
<td>$C_i \sqsubseteq A$, $C_1 \sqcap \ldots \sqcap A \sqcap \ldots \sqcap C_n \sqsubseteq D$</td>
</tr>
</tbody>
</table>

NF5

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \sqsubseteq \exists r. C$</td>
<td>$B \sqsubseteq \exists r. A \sqsubseteq C$</td>
</tr>
</tbody>
</table>

NF6

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$</td>
<td>$B \sqsubseteq C_1 \ldots \sqcap B \sqsubseteq C_n$</td>
</tr>
</tbody>
</table>

Abbreviations

- **C** (i) arbitrary concepts
- **C(i) D** complex concepts
- **B** concept name
- **A** fresh concept name

Uli Sattler
DL: EL
13
The normalisation rules

NF1

Input \(C \equiv D \)

Output \(C \sqsubseteq D \quad D \sqsubseteq C \)

NF2

Input \(C \sqsubseteq D \)

Output \(C \sqsubseteq A \quad A \sqsubseteq D \)

NF3

Input \(\exists r. C \sqsubseteq D \)

Output \(C \sqsubseteq A \quad \exists r. A \sqsubseteq D \)

NF4

Input \(C_1 \sqcap \ldots \sqcap C_i \sqcap \ldots \sqcap C_n \sqsubseteq D \)

Output \(C_i \sqsubseteq A \quad C_1 \sqcap \ldots \sqcap A \sqcap \ldots \sqcap C_n \sqsubseteq D \)

NF5

Input \(B \sqsubseteq \exists r. C \)

Output \(B \sqsubseteq \exists r. A \quad A \sqsubseteq C \)

NF6

Input \(B \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \)

Output \(B \sqsubseteq C_1 \quad \ldots \quad B \sqsubseteq C_n \)
The normalisation procedure

Given TBox \mathcal{T}, apply NF1–NF7 axiom-wise until none can be applied
The normalisation procedure

Given TBox \mathcal{T}, apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}'

- contains new concept names A_1, \ldots, A_k
- is of size linear in the size of \mathcal{T}
- is “equivalent” to \mathcal{T}
The normalisation procedure

Given TBox \mathcal{T}, apply NF1–NF7 axiom-wise until none can be applied.

The result \mathcal{T}' contains new concept names A_1, \ldots, A_k.

- is of size linear in the size of \mathcal{T}.
- is “equivalent” to \mathcal{T} ...

Lemma

- For every model $\mathcal{I} \models \mathcal{T}$, there is a model $\mathcal{J} \models \mathcal{T}'$
 such that $X^\mathcal{J} = X^\mathcal{I}$ for all $X \notin \{A_1, \ldots, A_k\}$.
- For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: \mathcal{T}' is equivalent to \mathcal{T} w.r.t. subsumption: $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$ for all C, D that don’t use the A_i.

Details and Example: see [Suntisrivaraporn 2005, pg. 37–39]
The normalisation procedure

Given TBox \mathcal{T}, apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}' contains new concept names A_1, \ldots, A_k

is of size linear in the size of \mathcal{T}

is “equivalent” to \mathcal{T} ...

Lemma

• For every model $\mathcal{I} \models \mathcal{T}$, there is a model $\mathcal{J} \models \mathcal{T}'$ such that $X^\mathcal{J} = X^\mathcal{I}$ for all $X \notin \{A_1, \ldots, A_k\}$.

• For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: \mathcal{T}' is equivalent to \mathcal{T} w.r.t. subsumption:

$\mathcal{I} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$

for all C, D that don’t use the A_i
The normalisation procedure

Given TBox \mathcal{T}, apply NF1–NF7 axiom-wise until none can be applied

The result \mathcal{T}'
- contains new concept names A_1, \ldots, A_k
- is of size linear in the size of \mathcal{T}
- is “equivalent” to \mathcal{T} ...

Lemma

- For every model $\mathcal{I} \models \mathcal{T}$, there is a model $\mathcal{J} \models \mathcal{T}'$ such that $X^\mathcal{J} = X^\mathcal{I}$ for all $X \notin \{A_1, \ldots, A_k\}$.
- For every model $\mathcal{J} \models \mathcal{T}'$, it holds that $\mathcal{I} \models \mathcal{T}$.

Consequence: \mathcal{T}' is equivalent to \mathcal{T} w.r.t. subsumption:

$\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$

for all C, D that don’t use the A_i.
And now ...

1. What is \mathcal{EL}?

2. Normalisation

3. A simple poly-time reasoning algorithm
What is \mathcal{EL}?

Normalisation

Reasoning

Initial assumptions

Input: TBox \mathcal{T}, concept names A, B

Question: does $\mathcal{T} \models A \sqsubseteq B$ hold?

Assumption of A, B being concept names is no real restriction:

$$
\mathcal{T} \models C \sqsubseteq D
$$

$$
\uparrow
$$

$$
\mathcal{T} \cup \{ A \equiv C, \ B \equiv D \} \models A \sqsubseteq B
$$
Deciding subsumptions via subsumer sets

Subsumer of A: a concept name B (or \top) with $\mathcal{T} \models A \sqsubseteq B$

Subsumer set $S(A)$: set that contains subsumers of A
Deciding subsumptions via subsumer sets

Subsumer of A: a concept name B (or \top) with $\mathcal{T} \models A \sqsubseteq B$

Subsumer set $S(A)$: set that contains subsumers of A

Representation of subsumer sets: in a labelled graph $G(\mathcal{T})$

- Nodes of $G(\mathcal{T}) =$ concept names (or \top) in \mathcal{T}
- Label of node A: $S(A)$

 $B \in S(A)$ means $\mathcal{T} \models A \sqsubseteq B$
- Label of edge (A, B): set $R(A, B)$ of roles

 $r \in R(A, B)$ means $\mathcal{T} \models A \sqsubseteq \exists r.B$
Deciding subsumptions via subsumer sets

Subsumer of A: a concept name B (or \top) with $\mathcal{T} \models A \sqsubseteq B$

Subsumer set $S(A)$: set that contains subsumers of A

Representation of subsumer sets: in a labelled graph $G(\mathcal{T})$

- Nodes of $G(\mathcal{T}) = \text{concept names (or } \top \text{)} \text{ in } \mathcal{T}$
- Label of node A: $S(A)$

 $B \in S(A)$ means $\mathcal{T} \models A \sqsubseteq B$

- Label of edge (A, B): set $R(A, B)$ of roles

 $r \in R(A, B)$ means $\mathcal{T} \models A \sqsubseteq \exists r.B$

Outline of the procedure:

1. Set $S(A) = \{A, \top\}$ for every A

2. Monotonically build $G(\mathcal{T})$
 by exhaustively applying completion rules

3. Check whether $B \in S(A)$ to determine whether $\mathcal{T} \models A \sqsubseteq B$
The completion rules

R1 If $A_1 \cap \ldots \cap A_n \subseteq B \in \mathcal{T}$ and $A_1, \ldots, A_n \in S(X)$ but $B \not\in S(X)$ then add B to $S(X)$
The completion rules

R1 If $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \in \mathcal{T}$
and $A_1, \ldots, A_n \in S(X)$ but $B \notin S(X)$
then add B to $S(X)$

R2 If $A \sqsubseteq \exists r. B \in \mathcal{T}$
and $A \in S(X)$ but $r \notin R(X, B)$
then add r to $R(X, B)$
The completion rules

R1 If \(A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B \in \mathcal{T} \)
and \(A_1, \ldots, A_n \in S(X) \) but \(B \not\in S(X) \)
then add \(B \) to \(S(X) \)

R2 If \(A \sqsubseteq \exists r.B \in \mathcal{T} \)
and \(A \in S(X) \) but \(r \not\in R(X, B) \)
then add \(r \) to \(R(X, B) \)

R3 If \(\exists r.A \sqsubseteq B \in \mathcal{T} \)
and \(r \in R(X, Y) \) and \(A \in S(Y) \) but \(B \not\in S(X) \)
then add \(B \) to \(S(X) \)
The “naïve” subsumption algorithm [Baader et al. 2006]

Algorithm 1

Input: \mathcal{EL} ontology \mathcal{T}
Output: $S(.)$ such that $\mathcal{T} \models A \sqsubseteq B$ iff $B \in S(A)$

$\mathcal{T}^{' } := \text{Normalise}(\mathcal{T})$ \hspace{1cm} \% by applying NF1 - NF6 exhaustively

Initialise graph for $\mathcal{T}^{' }$:

For each concept name A in $\mathcal{T}^{' }$ (or \top)
create a node A with $S(A) := \{A, \top\}$
set all edge labels $R(X, Y) := \emptyset$

Exhaustively apply rules R1-R3 to graph
Output resulting graph
Exercise

Let’s apply the normalisation procedure to the TBox

\[T = \{ A \sqsubseteq B \sqcap \exists r.C, \\
C \sqsubseteq \exists s.D, \\
\exists r.\exists s.T \sqcap B \sqsubseteq D \} \]

and then check whether it entails

\[A \sqsubseteq D. \]
Summary

Algorithm 1 . . .

- terminates in time **polynomial** in the size of \mathcal{T}
- constructs a **canonical model** of \mathcal{T}
- is **sound** and **complete**: outputs yes iff $\mathcal{T} \models A \sqsubseteq B$
- is **one pass** (all subsumptions in 1 pass)
- is still slow for big ontologies:
 ...search for applicable rules over 100K concept names/nodes

Smarter versions of Algorithm 1 . . .

- are goal-oriented, “one-pass”
- are implemented in the reasoners CEL, JCEL, ... for the
 extension \mathcal{EL}^{++}
- can be extended even to the Horn fragment of \mathcal{SHIQ}

For details see [Baader et al. 2005, Baader et al. 2006, Kazakov 2009].
References: links

Bio-medical ontologies

- **SNOMED**, the systematized nomenclature of human and veterinary medicine
- **Galen**
 http://www.opengalen.org
- **Go**, the Gene Ontology
References: articles (1)

F. Baader.
Terminological cycles in a description logic with existential restrictions.
http://lat.inf.tu-dresden.de/research/papers.html#2003

F. Baader, S. Brandt, and C. Lutz.
Pushing the \mathcal{EL} envelope.

Efficient reasoning in \mathcal{EL}^+.
S. Brandt.
Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and – what else?
http://www.cs.man.ac.uk/~sbrandt/papers.html

Y. Kazakov:
Consequence-Driven Reasoning for Horn $SHIQ$ Ontologies.

B. Suntisrivaraporn.
Optimization and Implementation of Subsumption Algorithms for the Description Logic EL with Cyclic TBoxes and General Concept Inclusion Axioms.
http://lat.inf.tu-dresden.de/research/papers.html#2005
What has been left out

- Loads of complexity results
- Other complexity measures
 - data complexity, relevant for OBDA – see Misha’s course on Thursday!
 - average case
- Other (reasoner) performance considerations
 - what makes reasoning hard: size, tree-width
 - robustness
 - robustness under (small) changes to \mathcal{O} & performance homo/heterogeneity
- Other reasoning problems
 - module extraction and inseparability
 - decomposition of ontologies
 - entailment explanation and justifications

Ask us for pointers, or look at Thomas Schneider & my ESSLLI 2012 course notes
Thank you for your attention!