Reasoning Web Summer School
Mannheim, July 2013

Introduction to Description Logics

Anni-Yasmin Turhan
Technische Universitat Dresden
Institute for Theoretical Computer Science

W

TU
Dresden

Knowledge Representation

General goal of knowledge representation:

" Develop formalisms for providing high-level descriptions of the world
that can be effectively used to build intelligent applications.”

e formalisms:
formal syntax and formal and unambiguous semantics

e high-level descriptions:
which aspects should be represented, which left out?

® intelligent applications:
are able to infer new knowledge from given knowledge

e effectively used:

@ reasoning techniques should allow “usable” implementation

TU
Dresden

Early knowledge representation systems

W

TU
Dresden

How to represent terminological knowledge?

Semantic Networks
e representation by graph-based formalism

e models entities and their relations

For example:

person

owns

mammal
is-a

» cat eats >, meat
is-a

garfield St SE lasagna

Semantic networks: Drawbacks

. mammal
Unclear semantics 4

is-a

e What does a node mean? person — VNS | ¢ €S | meat

A

e What does a link in the graph mean? is-a

G . . arfield eats lasagna
— ‘is-a’ has different meanings! g g

— ‘eats’: One thing that cats eat is meat?
All things that cats eat is meat?

Problems: missing semantics (reasoning!), complex pictures

» Ad-hoc methods for automated reasoning.
» Result of automated reasoning is system dependent!
@ Remedy: Use a logical formalism for KR rather than pictures

TU
Dresden 3

On phases of DL research

W

TU
Dresden

Early phase — eighties

e structural reasoning procedures
(bring concepts to a normal form and then compare their structure)

e sound, but incomplete reasoning systems

e complete reasoning regarded as not feasible (since intractable)

Second phase — nineties
e investigation of sound and complete reasoning procedures
Tableaux method

e complexity results and reasoning procedures for
increasingly expressive DLs

e optimized implementations of reasoning procedures
e.g. FaCT system ('98), RACER system ('99)

On phases of DL research

Third phase

e investigation of reasoning procedures for highly expressive DLs

e investigation of new inferences
e development of ontology editors

e standardization efforts: DAML+OIL, OWL 1.0

Fourth phase - last 6 years

e continuation of investigating increasingly expressive DLs
(e.g. SROZLQ)

e investigation of DLs with limited expressivity,
but good computational properties for a particular inference

“light weight DLs”
@ e W3C recommendation: OWL 2 (and 3 profiles)

TU
Dresden

Overview DL systems

W

TU
Dresden

Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

lauoseay

Defining Concepts with DLs

W

TU
Dresden

The core part of any DL is the concept language

Mammal 1 Jhas-cover.Fur 1 Yeats.Meat

Z
z

4

° concept ps-assigit a name to groups of objects

e role names assign a name to relations between objects

e constructors allow to related concept names and role names

Complex concepts can be used in concept definitions:

Cat = Mammal M1 3has-cover.Fur M Veats.Meat

The description logic ALC: syntax

Atomic types: concept names A, B, ... (unary predicates)

role names r, s,... (binary predicates)

ALC concept constructors:

—-C (negation)
CnD (conjunction)
CuD (disjunction)
Jr.C (existential restriction) EL
Vr.C (value restriction)
Special concepts: T (top concept)
1 (bottom concept)

For example: —=(A U Fr.(Vs.BM —A))
@ Mammal M1 Jhas-cover.Fur M Yeats.Meat

TU
Dresden

Example: ACC-concept descriptions

W

TU
Dresden

Signature: N¢ = { Person, Male, Happy },
N, = {has-child, has-sibling, likes, knows }

Parent;:

Person M 3 has-child.Person

Grandparent:

Person M 3 has-child.(3 has-child. Person)

Uncle of happy children:

Person M Male M 3 has-sibling.(3 has-child.Person)
M V has-sibling.(V has-child.Happy)

Semantics of named concepts

W

TU
Dresden

Semantics based on interpretation Z = (AZ, %)

Concepts: Subsets of domain A%

Roles: binary relations on domain A%

Primitive concepts T -
TI _ AZ Az ’
1T =0 rZ ®e s ° ’
AT C A* domain AT

10

Complex ALC-concepts: semantics

Semantics of complex concepts:
(—C)F = AT\ 7
(Crn D) =cCc*nD*
(CuD)t=ctuD?
(FIr.C)t = {d € AT | Je: e € AT with (d,e) € v’ and e € C*}

(Vr.C)t = {d € AT |Ve:e € AL, (d,e) € rt implies e € C*}

W

TU

Dresden 11

W

TU
Dresden

Reasoning tasks for concepts

model of C': interpretation Z with C* # ()

1. Concept satisfiability

C is satisfiable if there exists a model of C.

If unsatisfiable, the concept contains a contradiction.

2. Concept subsumption written C C_ D
Does C* C D? hold for all Z?

If C C D, then D is more general than C

3. Concept equivalence written C' = D
Does CZ = DZ hold for all Z?

If C' = D, then D and C' ‘say the same’.

12

W

TU
Dresden

Examples

Yowner.Rich M Yowner.Famous C Vowner.(Rich M Famous)

Jowner.Rich M Yowner.Famous [Z Jowner.(Rich 1 Famous)

C L T forall C.

1 C Cforall C.
C L D ifand only if C M =D is not satisfiable

C is satisfiable if not C' C L.

» Subsumption can be reduced to (un)satisfiability and vice versa.

13

DL systems are more than a concept language

W

TU
Dresden

Concept language

Terminology of the application

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

/

/ (categories and relations)

12U0SedYy

14

TBox: syntax and semantics

Kinds of concept axioms:

¢ Primitive concept definition: A L D A € Ng¢
e Concept definition: A = D A € N¢

e General concept inclusion (GCI): C C D

C C D holds in an interpretation Z iff C* C D*

e General concept equivalence: C = D

C = D holds in an interpretation Z iff C* = D?

TBox 7 : Finite set of concept axioms.

) Zisamodel ofa TBox T if CT C DY foral CC D € T.

TU
Dresden

15

Kinds of TBoxes

1. TBox 7 is a general TBox, if

e it is a finite set of concept axioms

e cyclic definitions and GCls are allowed
{WildAnimal = Animal M —3Jowner. T,

Mammal 1 3bodypart.Hunch =

Camel LI Dromedary}
2. TBox 7 is an unfoldable TBox, if it has

e only (primitive) concept definitions

e concept names at most once on the
left-hand side of definitions

{Elephant =
Ma

ypart. Trunk
e no cyclic definitions, no GCls

@ » Unfoldable TBoxes can be conceived as macro definitions.

Dresden 16

Terminological Reasoning Services

W

TU
Dresden

Reasoning tasks for TBoxes:

1. Concept satisfiability w.r.t. TBoxes
Given C' and 7. Does there exist a common model of C and 7 7?

2. Concept subsumption w.r.t. TBoxes (C C+ D)
Given C,D and 7. Does C* C D? hold in all models of 77

3. Classification of the TBoxes

Computation of all subsumption relationships between T
all named concepts in 7. PTet
—> Subsumption can be used Do/ '\Cat

to compute a concept hierarchy:
Beagle

17

Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant
Cat = Mammal M dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M Veats.Plants

Meat M Plant L |

1. TBox is satisfiable.

W

TU
Dresden 18

Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant
Cat = Mammal M dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M1 Veats.Plants [Jeats.Salad

Meat M Plant L |

1. TBox is satisfiable.

2. VegetarianCat is unsatisfiable w.r.t. TBox.

W

TU
Dresden 19

Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant

Cat = Mammal 1 3dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M1 Veats.Plants [Jeats.Salad

“MeatHPlantE—1—
Salad T Meat }

1. TBox is satisfiable.
2. VegetarianCat is unsatisfiable w.r.t. TBox.
@ 3. VegetarianCat L Vegetarian w.r.t. all of theTBoxes.

TU
Dresden 20

DL systems are more than a concept language

W

TU
Dresden

Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

~

12U0SedYy

N

Facts from the Application

21

ABoxes: syntax & semantics

W

TU
Dresden

ABox assertions in DL systems are:

e Concept assertions: C'(a)

e Role assertions: r(a,b)

Extend interpretations to individuals:
a € Ny, at -~ AT

Semantics of assertions:
e Concept Assertions: Z satisfies C(a) < af € C*

e Role Assertions: T satisfies r(a, b) <— (a%,bt) € r*

An ABox A is a finite set of assertions.

Z is a model for an ABox A if Z satisfies all assertions in .A.

22

Example: ABox

W

TU
Dresden

ABox is a partial description of the world.

(unlike models!)

ABox A
Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)
eats(garfield, 123) likes-most (garfield, garfield)

Veats.Beef(garfield)

23

Assertional Reasoning Services

Reasoning tasks for ABoxes:

1. ABox consistency
Given: A and 7. Do they have a common model?

2. Instance checking
Given: A, T, individual a, and concept C
Does aZ € C7Z hold in all models of A and 7?7

3. ABox realization

Given A and 7.
Compute for each individual a in .A:

@ the named concepts in 7 of which a is an instance of.

TU
Dresden

24

Example for ABox Reasoning

ABox is a partial description of the world.

ABox Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)
eats(garfield, 123) likes-most (garfield, garfield)

Veats.Beef(garfield)

TBox Cat = Mammal M1 Jhas-cover.Fur M1 Yeats.Meat
Meat = Beef LI Chicken

Lasagna " Beef L |

1. ABox is inconsistent w.r.t. TBox.

W

TU
Dresden

25

Example for ABox Reasoning

ABox is a partial description of the world.

ABox Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)

eats(garfield,123) likes-most (garfield, garfield)

Veats.Beef(garfield)

TBox Cat = Mammal M1 Jhas-cover.Fur M1 Yeats.Meat
Meat = Beef LI Chicken

Lasagna " Beef L |

1. ABox is inconsistent w.r.t. TBox.
@ 2. garfield is an instance of Cat

TU
Dresden

26

W

TU
Dresden

Relation of DLs to other logics

27

Description Logics and First-order Logic

W

TU
Dresden

Basic correspondence:

concept names A

role names 7

concepts

individuals

1111

unary predicates P4
binary predicates P.

formulas with one free variable

constants ¢,

28

Translation of concept descriptions into First-order Logic

W

TU
Dresden

P"(A) = Py(x)
" (0C) = —p"(C)
" (CND) = ¢“(C)A¢"(D)
" (CUD) = ¢*(C)V¢"(D)
e*(Ir.C) = ZFy.P.(x,y) A @¥(C) @Y. x and y exchanged
e (Vr.C) = Vy.P.(x,y) — ¢¥(C)
Note: - two variables suffice (no "=", no constants, no function symbols)

- not all DLs are purely first-order (transitive closure, etc.)

29

Translation of TBoxes and ABoxes into FOL

W

TU
Dresden

TBoxes:

Let C' be a concept and 7 a (general or unfoldable) TBox.

o(T) =Va. N ¢"(D) = ¢*(E)

DCE €T
ABoxes:
individual names a — constants c,
p(C(a)) = #“(C)[cd]
p(r(a,b)) = P.(cqcp)
p(A) = /\ ®(B)
BeA

30

Description Logics and Modal Logics

W

TU
Dresden

Obvious translation:

Notes:

concept names =i propositional variables
role names — modal parameters

concepts dr.C <~ formulas &

concepts Vr.C <~ formulas O

- Interpretations can be viewed as Kripke structures
- ALC is a notational variant of modal K,

- TBoxes related to universal modality: [, /\ D— FE
DCEeT

- ABoxes related to nominals / hybrid modal logic

31

DLs beyond ACC

W

TU
Dresden

32

Beyond ACC: concept constructors

Number restrictions (<nr), (Znr)
(Knr)yf={ze A’ |#{y|(z,y) €r'} <n}
(= nr)" ={zeca|#{y| (z,y) €r'} > n}

Qualified number restrictions (S nr C)a (Z nr C)
(KnrC)Y={ze A’ | #{y| (z,y) er* Ay € C*} < n}
>nrC)f={zec A’ | #{y| (z,y) erP Ay € CT} > n}

Example:

Car M (> 5 has-seat) M (< 5 has-seat)
O, M (> 1 has-seat Drivers-seat) M (< 1 has-seat Drivers-seat)

TU
Dresden

33

Beyond ALC: Concept constructors |l

Sometimes it is useful to refer to individuals in the TBox.

Recall: If they have same description
C = (Vv has-child. 1)

e Concepts are equivalent. D = (< 0 has-child)
— C=D

e Individuals are distinct. (Carla, Luisa): parent, Person(Carla),

(Markus, Luisa): parent, Person(Markus)
— Carla # Markus

Concept constructors using individuals:
e Nominals {a} {a}* = {a®}

e One-of {al,...,an} {ah"'aan}I — {a%.ﬂ"'va%:}

@ E.g.. RomanCatholic = 3 knows.{Pope}
Dresden 34

Beyond ACC: Roles

Role declarations

r atomicrole T C AT x AT

e.g. has-child

f feature or ff={(z,y) |
attribute (z,y) € fEAN(z,2) € fFT=>y=2}

e.g. has-mother

r C s roleinclusion 7 C s holdsin Z < % C st
role hierarchy

e.g. has-mother L has-parent N

@ has-family-member
has-sibling

TU

Dresden 35

—

Beyond ALC: Roles Il

W

TU
Dresden

Role operators

rt transitive role (r7)% = {(x, z) |

r—

inverse role

(z,y) € rt, (y,2) € r’t = (x,2) € '}

e.g. has-ancestor

(r)* ={(y,2) | (=, y) € v}

e.g. (has-parent)— = has-child

36

Names of description logics

W

TU
Dresden

Basis-DL: ACC

e &: Existential restrictions e F: Features, functional roles
e A/: Number restrictions e T Transitive roles

e O: Qualified number restrictions e L: Inverse roles

e (O: nominals, Objects e “H: role Hierarchies

e R.: complex Role inclusions

S: Abbreviation for ACCT

37

The OWL standard

W

TU
Dresden

OWL 1:

e W3C recommendation of 2004

e OWL DL and OWL Lite: DL-based ontology languages

OWL 2:

e \W3C recommendation of 2009

e consists of

— an expressive language: SROZLQO
— 2 profiles that correspond to light-weight DLs

38

The £L£ family

W

TU
Dresden

Prominent members:

EL - M,3d, T

ELT extends £L by: complex role inclusions: » o0 s C ¢ .

ELTT extends ELT by: e L

e hominals

e corresponds to OWL 2 EL profile

e allows for efficient reasoning

Typically, used with general TBoxes!

39

DL-Lite family

e designed for ontology-based data access

e tailored towards applications that need to handle
huge amounts of data

e allow efficient querying of ABoxes

e allow only for fairly light-weight TBoxes, but
can express the basic constructs of ER or UML diagramms

» required to store ABox in relational data base system
and use relational DB engine for querying

W

TU
Dresden 40

Overview DL systems

W

TU
Dresden

Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

lauoseay

41

Why automated reasoning?

TBox and the ABox capture implicit information.
We want to access this information by making it explicit!

Does my knowledge base . ..

e contain a concept that cannot have instances?

. . e i Check for satisfiabiliy w.r.t. TBox.
(since its definition is contradictory.)

[] Contall’l an unwanted Synonym fOI’ d Concept? Check for equivalent concepts_
(unwanted / unintended redundancy in my TBox)

e yield the concept hierarchy | wanted? Classify.

e contain individuals not compliant with the

e s Check ABox consistency.
specification of the concepts they belong to? d

W

TU
Dresden 42

Automated Reasoning

W

TU
Dresden

Requirements for good reasoning algorithms:

They should be decision procedures, i.e. they should be:

e terminating, You get always an answer.
e sound, Every positive answer is correct.
e complete. Every negative answer is correct.

» Prerequisit for safe and reliable applications!

43

Reduction of inferences

W

TU
Dresden

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

e Equivalence <—> Satisfiability
CETD iﬂ'—CETD andD;frC

e Subsumption <—> Satisfiability

C C+ D iff C D unsatisfiable w.r.t. T~
C L+ L if C is satisfiable w.r.t. 7 unsatisfiable w.r.t. T

44

Reduction of inferences

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

Instance checking <— ABox consistency
a is instance of C w.r.t. (7, A) iff (T, AU {~C(a)}) is inconsistent

Satisfiability <— ABox consistency
C is satisfiable w.r.t. 7 iff (7,{C(a)}) is consistent

W

TU
Dresden 45

Use the reduction

Reformulate a . ..

as an ABox consistency check

satisfiability test:
sat(C')?

Consistent: (7, {C(a)})?

subsumption test:

CCsD

Inconsistent: (7,{C M —~D(a)})?

instance check:

T,AE=C(a)?

W

TU
Dresden

Inconsistent: (7, AU {—-C(a)})?

Implement consistency test!

46

Reasoning method for ALC-KBs with unfoldable TBox

W

TU
Dresden

We consider: satisfiability of a concept w.r.t. a TBox.

Main steps:

1. Use the reduction to reformulate the reasoning problem

2. Expand concepts w.r.t. TBox

3. Normalize concept descriptions

4. Apply tableau rules

47

Expansion of concept descriptions

Naive approach for expansion:

Let C be concept, 7 unfoldable TBox

1. replace every concept name of a defined concept with
the right-hand side of its definitions A = C

2. repeat until no more replacements can be made.

W

TU
Dresden

48

Expansion of concept descriptions Il

W

TU
Dresden

Expansion process terminates due to acyclicity of the concept definitions!

But: exponential blow-up in the worst case!

T = { AO — V’P.Al [VS.Al
Al = V’T‘.Az [VS.Az

A1 =Vr. A, M Vs. Ay }

49

Negation Normal Form

A concept C is in negation normal form (NNF) if
negation occurs only in front of concept names.

Transformation rules:

—I(C/Y|_|D)M-> -C Uu-D
_I(CUD)W —-C' M -=D

—I(E"T'C) ~ VYr.—~C
=(Vr.C) ~ Jr.-C

W

TU
Dresden

50

Tableau Algorithm: ldea

W

TU
Dresden

Try to construct a model for the input concept Cy as follows:
(Co: expanded and in NNF)

e Represent potential models by proof ABoxes

e To decide satisfiability of C,
start with one initial proof ABox Ay

e Repeatedly apply tableau rules
and check for obvious contradictions

e Return ‘satisfiable’ iff a complete and contradiction-free
proof ABox was found

(l.e. if all proof ABoxes contain a contradiction,
return ‘not satisfiable’)

51

W

TU
Dresden

Proof ABox

Tableau algorithm works on sets of ABoxes: &

Initially, S contains proof ABox for concept C:

S := { Ao}, with Ag := {Co(x0) }

Apply tableau rules to set of proof ABoxes S until

- a proof ABox is complete (no more rules applicable)

or

- there exists an individual x in A such that
{B(z),~B(x)} C .A for some concept name B (Clash)

or L(x) € A.

52

Tableau rules for ALC

Precondition Replace A by:

—sn | (CinCy)(z) €A A’ := AU {C(z), Ca(x)}
Ci(x) € Aor Ca(x) € A

—y [(C1UCy)(z) €A A =AU {(Cy)(x)}
Ci(x) € Aand Co(x) € A A" = AU {(C?)(x)}

—3 | (Ir.C)(x) € A, A = AU {r(z,2),C(2)}
but no z in A s.t.
{r(z,2),C(2)} C A

—v {(Vr.C)(x),r(x,y)} C A, A = AU {C(y)}
@ but C(y) € A

TU
Dresden

W

TU
Dresden

Algorithm is a decision procedure

Lemma

1. If the algorithm returns “satisfiable”,
then the input concept has a model.

2. If the algorithm returns “not satisfiable”,
then the input concept has no model.

3. The algorithm terminates on any input

Corollary

ALC-concept satisfiability and subsumption are decidable

54

Soundness and completeness

W

TU
Dresden

Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let S’ be obtained from S by the application of a tableau rule.

Then S is consistent iff S’ is consistent.

Completeness of the procedure:

Directly follows from the definition of a clash.

55

Termination—some technical notions

Role depth of concepts d(C):
d(A) =0 A € N¢
d(-C) =d(C)
d(C M D) = d(C U D) = max{d(C), d(D)}
d(3r.C) =d(vVr.C) =d(C) + 1

Maximal nesting of quantifiers in a concept description.

W

TU
Dresden

56

Termination—some technical notions

W

TU
Dresden

sub-concept descriptions of concepts sub(C):
C € sub(C)
C = —D, then D € sub(C)
C=CimnCyor C =C;UC,, then C;,C5 € sub(C)
C =3r.Dor C =Vr.D,then D € sub(C)

sub-concept descriptions of ABoxes sub(.A):

sub(A) := U sub(C)
C(a)eA

57

Termination

W

TU
Dresden

The algorithm terminates since:

1. depth of the proof ABox bounded by d(Cy).
2. for each individual, at most #sub(C'y) successors are generated

3. each individual has at most #sub(C)y) concept assertions

4. concepts are never deleted from node labels

58

Complexity for reasoning with unfoldable TBoxes

W

TU
Dresden

Complexity of unfolding: exponential

Complexity of transformation into NNF: linear

Complexity of application of tableau rules: polynomial space

Ao A o A ysub(co)

e all ABoxes need to be considered,
but only one at a time

¢ the whole tree may be generated,
but only one path needs to be stored

59

Tableau algorithm for general TBoxes

e simple expansion does not work in the presence of GCls:

— replace a name by which part of the TBox?
— cyclic axioms: termination?

e Applying the GCls like rules does not work either!
Jr. (CMN3ds.D) C -EU3r.D

‘Precondition’ may never appear at relevant element

e Recall: GCls hold at every point in the model
— new tableau rule for GCls needed

W

TU
Dresden

60

Tableau algorithm for general TBoxes

W

TU
Dresden

Tableau rule for GCls
1. Code all GCls into one.

For 7 = {CiC Dy, Co L Ds,..., C, L Dy}
build the GCI T L Cger with
Coor = (ﬁCl L Dl) [(—|02 L Dz) [1e--T1 (ﬁCn LI Dn)

2. Assert C' 1 for every individual: new tableau rule

—>TLCCeaor- If in A and CGCI(SC) Q’ A,
then replace A with A’ = A U {Cgcr(x)}

61

Problem: termination

W

TU
Dresden

Consider: 7 = {B C 3r.B}
with CG’CI =-BUdr.B

o ®* B -B LU dr.B
dr.B

1 ® B —-BUdr.B
dr.B

r2 ¢ B —B Ll dr.B
dr.B

Remedy:
Block of application of — 5

62

W

TU
Dresden

Ancestor blocking

An individual x is directly blocked
by an individual y, iff:

e there is a path from y to x in A

e x was generated by —> 3 after y
‘y is older than x.’

e {C|C(zx) e A} C{D| D(y) € A}

An individual x is indirectly blocked if:

e there is a path from y to = in A
e y is directly blocked

An individual « is blocked
if it is blocked or indirectly blocked.

e B,-Budr.B

\ Jr.B

<— ‘ EEn

e B —-BUdr.B

I Jr.B

63

Adaptations to blocking

Replace the exists rule — 3 by a exists rule with blocking —3:

Precondition Replace .A by:

— 3o | (Ir.C)(x) € A,

and x is not (indirectly) blocked
but no z in A s.t.
{r(z,2),C(2)} C A

A =
AU {r(z,z),C(2)}

W

TU
Dresden 64

W

TU
Dresden

Adaptations to blocking

Have we obtained a model?

Some role-successors are missing in the ‘blocked’ ABox!

Build model w.r.t. blocking: . B
0e , "B U dr.B

How to obtain a model for: A\ , 3r.B
T={BLC 3r.B}?

Introduce ‘back links'. v

ri1® B, -BU3r.B
dr.B

65

Soundness and completeness

W

TU
Dresden

Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let S’ be obtained from S by the application of a tableau rule.

Then S is consistent iff S’ is consistent.

Completeness of the procedure:

Directly follows from the definition of a clash.

66

Termination

The algorithm terminates since:

1. depth of the proof ABox bounded:
e #individuals in A: finite
e #'new’ individuals directly reachable from an ‘old individual’: finite

e #'new’ individuals reachable from a ‘new individual’: finite
(bound by blocking condition)

2. each individual has at most #sub(Cgcr) + #sub(.A) successors

3. each individual has at most #sub(Cgcr) + #sub(A)
concept assertions

@ 4. concepts are never deleted from node labels

TU

Dresden 67

Tableau method for DLs

The tableaux algorithm

e is implemented in reasoner systems for expressive DLs

— in particular in the reasoner for OWL 2

e requires optimizations to yield systems
with acceptable running times

— more on this in Uli’s course!

W

TU
Dresden

68

Basic model theory — for ALC

W

TU
Dresden

Interpretations of ALC can be viewed as graphs

(with labeled edges and nodes).

69

Tree-shaped models (for ALC)

W

TU
Dresden

model of:

AL dr.B
BL dr.A
AUBL ds. T

7 {A}

1B} /.\

4y s D0
{}‘/) o

{B}
S @m

{A}
d € AT

Starting with a given node, the graph
can be unraveled into a tree without
‘changing membership’ in concepts.

70

Tree model property of ALC

W

TU
Dresden

Let 7 be a TBox and C' a concept description.
The interpretation Z is a tree model of C w.r.t. T if

e 7 is a model of 7 and

o the graph (A%, J,cn, 77) is a tree whose root belongs to C~.

Theorem:

ACLC has the tree model property.

i.e., if 7: ALC-TBox and C': ALC-concept description such that
C' is satisfiable w.r.t. 7, then C has a tree model w.r.t. 7.

71

No tree model property for ALCO

W

TU
Dresden

Theorem:

ALCQO does not have the tree model property.

Proof:

The concept {a} does not have a tree model w.r.t. {{a} C Ir.{a}}.

72

Finite model property of ALC

W

TU
Dresden

Let 7 be a TBox and C' a concept description.

The interpretation Z is a finite model of C' w.r.t. T iff
e 7 is a model of 7 and
o CT £ (), and A7 is finite.

Theorem:

ALC has the finite model property.

i.e., if 7: ALC-TBox and C': ALC-concept description such that
C' is satisfiable w.r.t. 7, then C has a finite model w.r.t. 7.

73

How to compare the expressivity of DLs?

How can we show that a concept constructor really exends ALC?

e Take a concept description C' that uses the new constructor

e Show that C' cannot be expressed by any ACC-concept description.

ACLC-concept descriptions are exactly those that cannot distinguish
between bisimular models.

W

TU
Dresden 74

Bisimulation between interpretations

W

TU
Dresden

Let Z; and Z, be interpretations.

The relation p C ATt x A2 is a bisimulation between Z; and Z, iff

oed, pdy, implies di € ATt iff dy € A2 forall A € N¢

ed;, p dyand (di,d}) € ™1 implies the existence of d}, € A”2 s.t.

d: p d and (da,d}) € ™2 forall r € Np

e d; p dy and (dz,d,) € r*2 implies the existence of d] € AT sit.

d' p d,and (di,d}) € vt forallr € Np

A p A

(I

75

Bisimulation invariance of A(C

W

TU
Dresden

Let Z; and Z, be interpretations and d; € AZ! and d» € A2,

(Z1,dy) ~ (Zy,dy) iff there is a bisimulation p between Z; and Z;
such that d; p d,

Theorem: (bisimulation invariance of ALC)

If (Z1,d;) ~ (Z5,d>), then the following holds for all .ACC-concepts C:

d, € CT iff dy € C*2

‘ACC-concepts cannot distinguish between d; and ds.’

76

Expressiveness: ACC vs. ACCN

Theorem: ACCN is more expressive than ACLC.

Pick: C = (< 1)

T, 1,
dlt(Z) dz.m
7\ ’“

8113@ 6121(0 62:0)

NOW, P = {(dl, dg), (811, 82), (612, 82)} is a bisimulation,
@ butd, € (K 1r)2andd; € (< 17)H

TU
Dresden

Expressiveness: ALC vs. ALCT

W

TU
Dresden

Theorem: ALCZ is more expressive than ALC.

Pick: C' = (Ir~.T)

Now, p = {(d;,d>)} is a bisimulation,
but d, € (Ir—.T)2and d; & (3r—.T)&

78

Conclusions

W

TU
Dresden

In this course we

e covered the origin and development of DLs as a research field

e introduced the ‘ingredients’ of DL knowledge bases

e defined the basic DL reasoning tasks

e introduced OWL 2 (& profiles)
e discussed the tableaux method for ALC
e showed properties for ALC models

e saw how to compare expressiveness of DLs

79

Outlook

... to up-coming sensations!

In the next courses Uli & Misha will show

¢ how high the complexity of reasoning is!

e how OWL reasoners can be optimized!
(Can be made run faster.)

TU
Dresden

80

