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Knowledge Representation

General goal of knowledge representation:

" Develop formalisms for providing high-level descriptions of the world
that can be effectively used to build intelligent applications.”

e formalisms:
formal syntax and formal and unambiguous semantics

e high-level descriptions:
which aspects should be represented, which left out?

® intelligent applications:
are able to infer new knowledge from given knowledge

e effectively used:

@ reasoning techniques should allow “usable” implementation
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Early knowledge representation systems
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How to represent terminological knowledge?

Semantic Networks
e representation by graph-based formalism

e models entities and their relations

For example:

person

owns

mammal
is-a

» cat eats >, meat
is-a

garfield St SE lasagna




Semantic networks: Drawbacks

. mammal
Unclear semantics 4

is-a

e What does a node mean? person — VNS | ¢ €S | meat

A

e What does a link in the graph mean? is-a

G . . arfield eats lasagna
— ‘is-a’ has different meanings! g g

— ‘eats’: One thing that cats eat is meat?
All things that cats eat is meat?

Problems: missing semantics (reasoning!), complex pictures

» Ad-hoc methods for automated reasoning.
» Result of automated reasoning is system dependent!
@ Remedy: Use a logical formalism for KR rather than pictures
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On phases of DL research
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Early phase — eighties

e structural reasoning procedures
(bring concepts to a normal form and then compare their structure)

e sound, but incomplete reasoning systems

e complete reasoning regarded as not feasible (since intractable)

Second phase — nineties
e investigation of sound and complete reasoning procedures
Tableaux method

e complexity results and reasoning procedures for
increasingly expressive DLs

e optimized implementations of reasoning procedures
e.g. FaCT system ('98), RACER system ('99)




On phases of DL research

Third phase

e investigation of reasoning procedures for highly expressive DLs

e investigation of new inferences
e development of ontology editors

e standardization efforts: DAML+OIL, OWL 1.0

Fourth phase - last 6 years

e continuation of investigating increasingly expressive DLs
(e.g. SROZLQ)

e investigation of DLs with limited expressivity,
but good computational properties for a particular inference

“light weight DLs”
@ e W3C recommendation: OWL 2 (and 3 profiles)
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Overview DL systems
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Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

lauoseay




Defining Concepts with DLs
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The core part of any DL is the concept language

Mammal 1 Jhas-cover.Fur 1 Yeats.Meat

Z
z

4

° concept ps-assigit a name to groups of objects

e role names assign a name to relations between objects

e constructors allow to related concept names and role names

Complex concepts can be used in concept definitions:

Cat = Mammal M1 3has-cover.Fur M Veats.Meat




The description logic ALC: syntax

Atomic types: concept names A, B, ... (unary predicates)

role names r, s,... (binary predicates)

ALC concept constructors:

—-C (negation)
CnD (conjunction)
CuD (disjunction)
Jr.C (existential restriction) EL
Vr.C (value restriction)
Special concepts: T (top concept)
1 (bottom concept)

For example: —=( A U Fr.(Vs.BM —A))
@ Mammal M1 Jhas-cover.Fur M Yeats.Meat
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Example: ACC-concept descriptions
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Signature:  N¢ = { Person, Male, Happy },
N, = {has-child, has-sibling, likes, knows }

Parent;:

Person M 3 has-child.Person

Grandparent:

Person M 3 has-child.(3 has-child. Person)

Uncle of happy children:

Person M Male M 3 has-sibling.(3 has-child.Person)
M V has-sibling.(V has-child.Happy)




Semantics of named concepts
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Semantics based on interpretation Z = (AZ, %)

Concepts: Subsets of domain A%

Roles: binary relations on domain A%

Primitive concepts T -
TI _ AZ Az ’
1T =0 rZ ®e s ° ’
AT C A* domain AT
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Complex ALC-concepts: semantics

Semantics of complex concepts:
(—C)F = AT\ 7
(Crn D) =cCc*nD*
(CuD)t=ctuD?
(FIr.C)t = {d € AT | Je: e € AT with (d,e) € v’ and e € C*}

(Vr.C)t = {d € AT |Ve:e € AL, (d,e) € rt implies e € C*}
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Reasoning tasks for concepts

model of C': interpretation Z with C* # ()

1. Concept satisfiability

C is satisfiable if there exists a model of C.

If unsatisfiable, the concept contains a contradiction.

2. Concept subsumption written C C_ D
Does C* C D? hold for all Z?

If C C D, then D is more general than C

3. Concept equivalence written C' = D
Does CZ = DZ hold for all Z?

If C' = D, then D and C' ‘say the same’.

12
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Examples

Yowner.Rich M Yowner.Famous C Vowner.(Rich M Famous)

Jowner.Rich M Yowner.Famous [Z Jowner.(Rich 1 Famous)

C L T forall C.

1 C Cforall C.
C L D ifand only if C M =D is not satisfiable

C is satisfiable if not C' C L.

»  Subsumption can be reduced to (un)satisfiability and vice versa.

13




DL systems are more than a concept language
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Concept language

Terminology of the application

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

/

/ (categories and relations)

12U0SedYy
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TBox: syntax and semantics

Kinds of concept axioms:

¢ Primitive concept definition: A L D A € Ng¢
e Concept definition: A = D A € N¢

e General concept inclusion (GCI): C C D

C C D holds in an interpretation Z iff C* C D*

e General concept equivalence: C = D

C = D holds in an interpretation Z iff C* = D?

TBox 7 : Finite set of concept axioms.

) Zisamodel ofa TBox T if CT C DY foral CC D € T.

TU
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Kinds of TBoxes

1. TBox 7 is a general TBox, if

e it is a finite set of concept axioms

e cyclic definitions and GCls are allowed
{WildAnimal = Animal M —3Jowner. T,

Mammal 1 3bodypart.Hunch =

Camel LI Dromedary}
2. TBox 7 is an unfoldable TBox, if it has

e only (primitive) concept definitions

e concept names at most once on the
left-hand side of definitions

{Elephant =
Ma

ypart. Trunk
e no cyclic definitions, no GCls

@ » Unfoldable TBoxes can be conceived as macro definitions.

Dresden 16



Terminological Reasoning Services
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Reasoning tasks for TBoxes:

1. Concept satisfiability w.r.t. TBoxes
Given C' and 7. Does there exist a common model of C and 7 7?

2. Concept subsumption w.r.t. TBoxes (C C+ D)
Given C,D and 7. Does C* C D? hold in all models of 77

3. Classification of the TBoxes

Computation of all subsumption relationships between T
all named concepts in 7. PTet
—> Subsumption can be used Do/ '\Cat

to compute a concept hierarchy:
Beagle

17



Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant
Cat = Mammal M dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M Veats.Plants

Meat M Plant L |

1. TBox is satisfiable.

W
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Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant
Cat = Mammal M dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M1 Veats.Plants [ Jeats.Salad

Meat M Plant L |

1. TBox is satisfiable.

2. VegetarianCat is unsatisfiable w.r.t. TBox.

W
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Example for TBox reasoning

TBox
{ Mammal C Animal Salad L Plant

Vegetarian = Animal "1 Veats.Plant

Cat = Mammal 1 3dhas-cover.Fur M Veats.Meat

VegetarianCat = Cat M1 Veats.Plants [ Jeats.Salad

“MeatHPlantE—1—
Salad T Meat }

1. TBox is satisfiable.
2. VegetarianCat is unsatisfiable w.r.t. TBox.
@ 3. VegetarianCat L Vegetarian w.r.t. all of theTBoxes.

TU
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DL systems are more than a concept language
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Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

~
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N

Facts from the Application
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ABoxes: syntax & semantics
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ABox assertions in DL systems are:

e Concept assertions: C'(a)

e Role assertions:  r(a,b)

Extend interpretations to individuals:
a € Ny, at -~ AT

Semantics of assertions:
e Concept Assertions: Z satisfies C(a) < af € C*

e Role Assertions: T satisfies r(a, b) <— (a%,bt) € r*

An ABox A is a finite set of assertions.

Z is a model for an ABox A if Z satisfies all assertions in .A.

22



Example: ABox
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ABox is a partial description of the world.

(unlike models!)

ABox A
Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)
eats(garfield, 123) likes-most ( garfield, garfield)

Veats.Beef(garfield)

23



Assertional Reasoning Services

Reasoning tasks for ABoxes:

1. ABox consistency
Given: A and 7. Do they have a common model?

2. Instance checking
Given: A, T, individual a, and concept C
Does aZ € C7Z hold in all models of A and 7?7

3. ABox realization

Given A and 7.
Compute for each individual a in .A:

@ the named concepts in 7 of which a is an instance of.

TU
Dresden
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Example for ABox Reasoning

ABox is a partial description of the world.

ABox Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)
eats(garfield, 123) likes-most (garfield, garfield)

Veats.Beef(garfield)

TBox Cat = Mammal M1 Jhas-cover.Fur M1 Yeats.Meat
Meat = Beef LI Chicken

Lasagna " Beef L |

1. ABox is inconsistent w.r.t. TBox.

W
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Example for ABox Reasoning

ABox is a partial description of the world.

ABox Mammal(garfield) Fur(f17)
Lasagna(123) has-cover(garfield, f17)

eats(garfield,123) likes-most (garfield, garfield)

Veats.Beef(garfield)

TBox Cat = Mammal M1 Jhas-cover.Fur M1 Yeats.Meat
Meat = Beef LI Chicken

Lasagna " Beef L |

1. ABox is inconsistent w.r.t. TBox.
@ 2. garfield is an instance of Cat

TU
Dresden
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Relation of DLs to other logics
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Description Logics and First-order Logic
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Basic correspondence:

concept names A

role names 7

concepts

individuals

1111

unary predicates P4
binary predicates P.

formulas with one free variable

constants ¢,

28



Translation of concept descriptions into First-order Logic
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P"(A) = Py(x)
" (0C) = —p"(C)
" (CND) = ¢“(C)A¢"(D)
" (CUD) = ¢*(C)V¢"(D)
e*(Ir.C) = ZFy.P.(x,y) A @¥(C) @Y. x and y exchanged
e (Vr.C) = Vy.P.(x,y) — ¢¥(C)
Note: - two variables suffice (no "=", no constants, no function symbols)

- not all DLs are purely first-order (transitive closure, etc.)

29



Translation of TBoxes and ABoxes into FOL
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TBoxes:

Let C' be a concept and 7 a (general or unfoldable) TBox.

o(T) =Va. N ¢"(D) = ¢*(E)

DCE €T
ABoxes:
individual names a — constants c,
p(C(a)) = #“(C)[cd]
p(r(a,b)) = P.(cqcp)
p(A) = /\ ®(B)
BeA
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Description Logics and Modal Logics
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Obvious translation:

Notes:

concept names =i propositional variables
role names — modal parameters

concepts dr.C <~ formulas &

concepts Vr.C <~ formulas O

- Interpretations can be viewed as Kripke structures
- ALC is a notational variant of modal K,

- TBoxes related to universal modality: [, /\ D— FE
DCEeT

- ABoxes related to nominals / hybrid modal logic

31



DLs beyond ACC
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Beyond ACC: concept constructors

Number restrictions (<nr), (Znr)
(Knr)yf={ze A’ |#{y|(z,y) €r'} <n}
(= nr)" ={zeca|#{y| (z,y) €r'} > n}

Qualified number restrictions (S nr C)a (Z nr C)
(KnrC)Y={ze A’ | #{y| (z,y) er* Ay € C*} < n}
>nrC)f={zec A’ | #{y| (z,y) erP Ay € CT} > n}

Example:

Car M (> 5 has-seat) M (< 5 has-seat)
O, M (> 1 has-seat Drivers-seat) M (< 1 has-seat Drivers-seat)

TU
Dresden
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Beyond ALC: Concept constructors |l

Sometimes it is useful to refer to individuals in the TBox.

Recall: If they have same description
C = (Vv has-child. 1)

e Concepts are equivalent. D = (< 0 has-child)
— C=D

e Individuals are distinct. (Carla, Luisa): parent, Person(Carla),

(Markus, Luisa): parent, Person(Markus)
— Carla # Markus

Concept constructors using individuals:
e Nominals {a} {a}* = {a®}

e One-of {al,...,an} {ah"'aan}I — {a%.ﬂ"'va%:}

@ E.g.. RomanCatholic = 3 knows.{Pope}
Dresden 34



Beyond ACC: Roles

Role declarations

r  atomicrole T C AT x AT

e.g. has-child

f  feature or ff={(z,y) |
attribute (z,y) € fEAN(z,2) € fFT=>y=2}

e.g. has-mother

r C s roleinclusion 7 C s holdsin Z < % C st
role hierarchy

e.g. has-mother L has-parent N

@ has-family-member
has-sibling

TU
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Beyond ALC: Roles Il
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Role operators

rt  transitive role (r7)% = {(x, z) |

r—

inverse role

(z,y) € rt, (y,2) € r’t = (x,2) € '}

e.g. has-ancestor

(r)* ={(y,2) | (=, y) € v}

e.g. (has-parent)— = has-child

36



Names of description logics
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Basis-DL: ACC

e &: Existential restrictions e F: Features, functional roles
e A/: Number restrictions e T Transitive roles

e O: Qualified number restrictions e L: Inverse roles

e (O: nominals, Objects e “H: role Hierarchies

e R.: complex Role inclusions

S: Abbreviation for ACCT

37



The OWL standard
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OWL 1:

e W3C recommendation of 2004

e OWL DL and OWL Lite: DL-based ontology languages

OWL 2:

e \W3C recommendation of 2009

e consists of

— an expressive language: SROZLQO
— 2 profiles that correspond to light-weight DLs

38



The £L£ family
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Prominent members:

EL - M,3d, T

ELT extends £L by: complex role inclusions: » o0 s C ¢ .

ELTT extends ELT by: e L

e hominals

e corresponds to OWL 2 EL profile

e allows for efficient reasoning

Typically, used with general TBoxes!

39




DL-Lite family

e designed for ontology-based data access

e tailored towards applications that need to handle
huge amounts of data

e allow efficient querying of ABoxes

e allow only for fairly light-weight TBoxes, but
can express the basic constructs of ER or UML diagramms

» required to store ABox in relational data base system
and use relational DB engine for querying

W
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Overview DL systems
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Concept language

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

lauoseay
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Why automated reasoning?

TBox and the ABox capture implicit information.
We want to access this information by making it explicit!

Does my knowledge base . ..

e contain a concept that cannot have instances?

. . e i Check for satisfiabiliy w.r.t. TBox.
(since its definition is contradictory.)

[ ] Contall’l an unwanted Synonym fOI’ d Concept? Check for equivalent concepts_
(unwanted / unintended redundancy in my TBox)

e yield the concept hierarchy | wanted? Classify.

e contain individuals not compliant with the

e s Check ABox consistency.
specification of the concepts they belong to? d

W
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Automated Reasoning
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Requirements for good reasoning algorithms:

They should be decision procedures, i.e. they should be:

e terminating, You get always an answer.
e sound, Every positive answer is correct.
e complete. Every negative answer is correct.

»  Prerequisit for safe and reliable applications!

43



Reduction of inferences
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Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

e Equivalence <—> Satisfiability
CETD iﬂ'—CETD andD;frC

e Subsumption <—> Satisfiability

C C+ D iff C D unsatisfiable w.r.t. T~
C L+ L if C is satisfiable w.r.t. 7 unsatisfiable w.r.t. T

44



Reduction of inferences

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

Instance checking <— ABox consistency
a is instance of C w.r.t. (7, A) iff (T, AU {~C(a)}) is inconsistent

Satisfiability <— ABox consistency
C is satisfiable w.r.t. 7 iff (7,{C(a)}) is consistent

W
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Use the reduction

Reformulate a . ..

as an ABox consistency check

satisfiability test:
sat(C')?

Consistent: (7, {C(a)})?

subsumption test:

CCsD

Inconsistent: (7,{C M —~D(a)})?

instance check:

T,AE=C(a)?

W
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Inconsistent: (7, AU {—-C(a)})?

Implement consistency test!

46



Reasoning method for ALC-KBs with unfoldable TBox
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We consider: satisfiability of a concept w.r.t. a TBox.

Main steps:

1. Use the reduction to reformulate the reasoning problem

2. Expand concepts w.r.t. TBox

3. Normalize concept descriptions

4. Apply tableau rules

47



Expansion of concept descriptions

Naive approach for expansion:

Let C be concept, 7 unfoldable TBox

1. replace every concept name of a defined concept with
the right-hand side of its definitions A = C

2. repeat until no more replacements can be made.
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Expansion of concept descriptions Il
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Expansion process terminates due to acyclicity of the concept definitions!

But: exponential blow-up in the worst case!

T = { AO — V’P.Al [ VS.Al
Al = V’T‘.Az [ VS.Az

A1 =Vr. A, M Vs. Ay }

49



Negation Normal Form

A concept C is in negation normal form (NNF) if
negation occurs only in front of concept names.

Transformation rules:

—I(C/Y|_|D)M-> -C Uu-D
_I(CUD)W —-C' M -=D

—I(E"T'C) ~  VYr.—~C
=(Vr.C) ~ Jr.-C

W
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Tableau Algorithm: ldea
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Try to construct a model for the input concept Cy as follows:
(Co: expanded and in NNF)

e Represent potential models by proof ABoxes

e To decide satisfiability of C,
start with one initial proof ABox Ay

e Repeatedly apply tableau rules
and check for obvious contradictions

e Return ‘satisfiable’ iff a complete and contradiction-free
proof ABox was found

(l.e. if all proof ABoxes contain a contradiction,
return ‘not satisfiable’)

51
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Proof ABox

Tableau algorithm works on sets of ABoxes: &

Initially, S contains proof ABox for concept C:

S := { Ao}, with Ag := {Co(x0) }

Apply tableau rules to set of proof ABoxes S until

- a proof ABox is complete (no more rules applicable)

or

- there exists an individual x in A such that
{B(z),~B(x)} C .A for some concept name B (Clash)

or L(x) € A.

52



Tableau rules for ALC

Precondition Replace A by:

—sn | (CinCy)(z) €A A’ := AU {C(z), Ca(x)}
Ci(x) € Aor Ca(x) € A

—y [ (C1UCy)(z) €A A =AU {(Cy)(x)}
Ci(x) € Aand Co(x) € A A" = AU {(C?)(x)}

—3 | (Ir.C)(x) € A, A = AU {r(z,2),C(2)}
but no z in A s.t.
{r(z,2),C(2)} C A

—v {(Vr.C)(x),r(x,y)} C A, A = AU {C(y)}
@ but C(y) € A

TU
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Algorithm is a decision procedure

Lemma

1. If the algorithm returns “satisfiable”,
then the input concept has a model.

2. If the algorithm returns “not satisfiable”,
then the input concept has no model.

3. The algorithm terminates on any input

Corollary

ALC-concept satisfiability and subsumption are decidable
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Soundness and completeness
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Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let S’ be obtained from S by the application of a tableau rule.

Then S is consistent iff S’ is consistent.

Completeness of the procedure:

Directly follows from the definition of a clash.
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Termination—some technical notions

Role depth of concepts d(C):
d(A) =0 A € N¢
d(-C) =d(C)
d(C M D) = d(C U D) = max{d(C), d(D)}
d(3r.C) =d(vVr.C) =d(C) + 1

Maximal nesting of quantifiers in a concept description.

W
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Termination—some technical notions
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sub-concept descriptions of concepts sub(C):
C € sub(C)
C = —D, then D € sub(C)
C=CimnCyor C =C;UC,, then C;,C5 € sub(C)
C =3r.Dor C =Vr.D,then D € sub(C)

sub-concept descriptions of ABoxes sub(.A):

sub(A) := U sub(C)
C(a)eA

57



Termination
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The algorithm terminates since:

1. depth of the proof ABox bounded by d(Cy).
2. for each individual, at most #sub(C'y) successors are generated

3. each individual has at most #sub(C)y) concept assertions

4. concepts are never deleted from node labels

58



Complexity for reasoning with unfoldable TBoxes

W

TU
Dresden

Complexity of unfolding: exponential

Complexity of transformation into NNF: linear

Complexity of application of tableau rules: polynomial space

Ao A o A ysub(co)

e all ABoxes need to be considered,
but only one at a time

¢ the whole tree may be generated,
but only one path needs to be stored

59



Tableau algorithm for general TBoxes

e simple expansion does not work in the presence of GCls:

— replace a name by which part of the TBox?
— cyclic axioms: termination?

e Applying the GCls like rules does not work either!
Jr. (CMN3ds.D) C -EU3r.D

‘Precondition’ may never appear at relevant element

e Recall: GCls hold at every point in the model
— new tableau rule for GCls needed

W
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Tableau algorithm for general TBoxes
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Tableau rule for GCls
1. Code all GCls into one.

For 7 = {CiC Dy, Co L Ds,..., C, L Dy}
build the GCI T L Cger with
Coor = (ﬁCl L Dl) [ (—|02 L Dz) [1e--T1 (ﬁCn LI Dn)

2. Assert C' 1 for every individual: new tableau rule

—>TLCCeaor- If  in A and CGCI(SC) Q’ A,
then replace A with A’ = A U {Cgcr(x)}

61



Problem: termination
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Consider: 7 = {B C 3r.B}
with CG’CI =-BUdr.B

o ®* B -B LU dr.B
dr.B

1 ® B —-BUdr.B
dr.B

r2 ¢ B —B Ll dr.B
dr.B

Remedy:
Block of application of — 5
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Ancestor blocking

An individual x is directly blocked
by an individual y, iff:

e there is a path from y to x in A

e x was generated by —> 3 after y
‘y is older than x.’

e {C|C(zx) e A} C{D| D(y) € A}

An individual x is indirectly blocked if:

e there is a path from y to = in A
e y is directly blocked

An individual « is blocked
if it is blocked or indirectly blocked.

e B,-Budr.B

\ Jr.B

<— ‘ EEn

e B —-BUdr.B

I Jr.B

63



Adaptations to blocking

Replace the exists rule — 3 by a exists rule with blocking —3:

Precondition Replace .A by:

— 3o | (Ir.C)(x) € A,

and x is not (indirectly) blocked
but no z in A s.t.
{r(z,2),C(2)} C A

A =
AU {r(z,z),C(2)}

W

TU
Dresden 64



W

TU
Dresden

Adaptations to blocking

Have we obtained a model?

Some role-successors are missing in the ‘blocked’ ABox!

Build model w.r.t. blocking: . B
0e , "B U dr.B

How to obtain a model for: A\ , 3r.B
T={BLC 3r.B}?

Introduce ‘back links'. v

ri1® B, -BU3r.B
dr.B
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Soundness and completeness
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Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let S’ be obtained from S by the application of a tableau rule.

Then S is consistent iff S’ is consistent.

Completeness of the procedure:

Directly follows from the definition of a clash.
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Termination

The algorithm terminates since:

1. depth of the proof ABox bounded:
e #individuals in A: finite
e #'new’ individuals directly reachable from an ‘old individual’: finite

e #'new’ individuals reachable from a ‘new individual’: finite
(bound by blocking condition)

2. each individual has at most #sub(Cgcr) + #sub(.A) successors

3. each individual has at most #sub(Cgcr) + #sub(A)
concept assertions

@ 4. concepts are never deleted from node labels

TU
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Tableau method for DLs

The tableaux algorithm

e is implemented in reasoner systems for expressive DLs

— in particular in the reasoner for OWL 2

e requires optimizations to yield systems
with acceptable running times

— more on this in Uli’s course!
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Basic model theory — for ALC
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Interpretations of ALC can be viewed as graphs

(with labeled edges and nodes).
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Tree-shaped models (for ALC)
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model of:

AL dr.B
BL dr.A
AUBL ds. T

7 {A}

1B} /.\

4y s D0
{}‘/ ) o

{B}
S @m

{A}
d € AT

Starting with a given node, the graph
can be unraveled into a tree without
‘changing membership’ in concepts.
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Tree model property of ALC
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Let 7 be a TBox and C' a concept description.
The interpretation Z is a tree model of C w.r.t. T if

e 7 is a model of 7 and

o the graph (A%, J,cn, 77) is a tree whose root belongs to C~.

Theorem:

ACLC has the tree model property.

i.e., if 7: ALC-TBox and C': ALC-concept description such that
C' is satisfiable w.r.t. 7, then C has a tree model w.r.t. 7.
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No tree model property for ALCO

W

TU
Dresden

Theorem:

ALCQO does not have the tree model property.

Proof:

The concept {a} does not have a tree model w.r.t. {{a} C Ir.{a}}.
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Finite model property of ALC
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Let 7 be a TBox and C' a concept description.

The interpretation Z is a finite model of C' w.r.t. T iff
e 7 is a model of 7 and
o CT £ (), and A7 is finite.

Theorem:

ALC has the finite model property.

i.e., if 7: ALC-TBox and C': ALC-concept description such that
C' is satisfiable w.r.t. 7, then C has a finite model w.r.t. 7.
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How to compare the expressivity of DLs?

How can we show that a concept constructor really exends ALC?

e Take a concept description C' that uses the new constructor

e Show that C' cannot be expressed by any ACC-concept description.

ACLC-concept descriptions are exactly those that cannot distinguish
between bisimular models.

W
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Bisimulation between interpretations
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Let Z; and Z, be interpretations.

The relation p C ATt x A2 is a bisimulation between Z; and Z, iff

oed, pdy, implies di € ATt iff dy € A2 forall A € N¢

ed;, p dyand (di,d}) € ™1 implies the existence of d}, € A”2 s.t.

d: p d and (da,d}) € ™2 forall r € Np

e d; p dy and (dz,d,) € r*2 implies the existence of d] € AT sit.

d' p d,and (di,d}) € vt forallr € Np

A p A

(I
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Bisimulation invariance of A(C
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Let Z; and Z, be interpretations and d; € AZ! and d» € A2,

(Z1,dy) ~ (Zy,dy) iff there is a bisimulation p between Z; and Z;
such that d; p d,

Theorem: (bisimulation invariance of ALC)

If (Z1,d;) ~ (Z5,d>), then the following holds for all .ACC-concepts C:

d, € CT iff dy € C*2

‘ACC-concepts cannot distinguish between d; and ds.’
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Expressiveness: ACC vs. ACCN

Theorem: ACCN is more expressive than ACLC.

Pick: C = (< 1)

T, 1,
dlt(Z) dz.m
7\ ’“

8113@ 6121(0 62:0)

NOW, P = {(dl, dg), (811, 82), (612, 82)} is a bisimulation,
@ butd, € (K 1r)2andd; € (< 17)H
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Expressiveness: ALC vs. ALCT
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Theorem: ALCZ is more expressive than ALC.

Pick: C' = (Ir~.T)

Now, p = {(d;,d>)} is a bisimulation,
but d, € (Ir—.T)2and d; & (3r—.T)&
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Conclusions
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In this course we

e covered the origin and development of DLs as a research field

e introduced the ‘ingredients’ of DL knowledge bases

e defined the basic DL reasoning tasks

e introduced OWL 2 (& profiles)
e discussed the tableaux method for ALC
e showed properties for ALC models

e saw how to compare expressiveness of DLs
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Outlook

... to up-coming sensations!

In the next courses Uli & Misha will show

¢ how high the complexity of reasoning is!

e how OWL reasoners can be optimized!
(Can be made run faster.)
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