Introduction to Description Logics

Anni-Yasmin Turhan
Technische Universität Dresden
Institute for Theoretical Computer Science
General goal of knowledge representation:

"Develop formalisms for providing high-level descriptions of the world that can be effectively used to build intelligent applications."

- formalisms:
 formal syntax and formal and unambiguous semantics

- high-level descriptions:
 which aspects should be represented, which left out?

- intelligent applications:
 are able to infer new knowledge from given knowledge

- effectively used:
 reasoning techniques should allow “usable” implementation
Early knowledge representation systems

How to represent terminological knowledge?

Semantic Networks

- representation by graph-based formalism
- models entities and their relations

For example:

```
  person          cat          meat
     
    owns          eats

         mammal
   is-a
   
         garfield
   eats
   is-a

         lasagna
```
Unclear semantics

- What does a node mean?
- What does a link in the graph mean?
 - ‘is-a’ has different meanings!
 - ‘eats’: One thing that cats eat is meat?
 All things that cats eat is meat?

Problems: missing semantics (reasoning!), complex pictures

⇒ Ad-hoc methods for automated reasoning.
⇒ Result of automated reasoning is system dependent!

Remedy: Use a logical formalism for KR rather than pictures
On phases of DL research

Early phase — eighties

- structural reasoning procedures
 (bring concepts to a normal form and then compare their structure)
- sound, but incomplete reasoning systems
- complete reasoning regarded as not feasible (since intractable)

Second phase — nineties

- investigation of sound and complete reasoning procedures
 Tableaux method
- complexity results and reasoning procedures for increasingly expressive DLs
- optimized implementations of reasoning procedures
 e.g. FaCT system ('98), RACER system ('99)
On phases of DL research

Third phase

- investigation of reasoning procedures for highly expressive DLs
- investigation of new inferences
- development of ontology editors
- standardization efforts: DAML+OIL, OWL 1.0

Fourth phase – last 6 years

- continuation of investigating increasingly expressive DLs (e.g. SROIQ)
- investigation of DLs with limited expressivity, but good computational properties for a particular inference — “light weight DLs”
- W3C recommendation: OWL 2 (and 3 profiles)
Overview DL systems

Knowledge base

TBox
Terminological
background
knowledge

ABox
Knowledge about
Individuals

Concept language

Reasoner
Defining Concepts with DLs

The core part of any DL is the concept language

\[\text{Mammal} \sqsubseteq \exists \text{has-cover}. \text{Fur} \sqsubseteq \forall \text{eats}. \text{Meat} \]

- **concept names** assign a name to groups of objects
- **role names** assign a name to relations between objects
- **constructors** allow to related concept names and role names

Complex concepts can be used in concept definitions:

\[\text{Cat} \equiv \text{Mammal} \sqsubseteq \exists \text{has-cover}. \text{Fur} \sqsubseteq \forall \text{eats}. \text{Meat} \]
The description logic \(\mathcal{ALC} \): syntax

Atomic types: concept names \(A, B, \ldots \) (unary predicates)
role names \(r, s, \ldots \) (binary predicates)

\(\mathcal{ALC} \) concept constructors:

\[
\begin{align*}
\neg C & \quad \text{(negation)} \\
C \sqcap D & \quad \text{(conjunction)} \\
C \sqcup D & \quad \text{(disjunction)} \\
\exists r.C & \quad \text{(existential restriction)} \\
\forall r.C & \quad \text{(value restriction)}
\end{align*}
\]

Special concepts:

\[
\begin{align*}
\top & \quad \text{(top concept)} \\
\bot & \quad \text{(bottom concept)}
\end{align*}
\]

For example:

\[
\neg (A \sqcup \exists r.(\forall s.B \sqcap \neg A))
\]

Mammal \(\sqcap \exists \text{has-cover}.\text{Fur} \sqcap \forall \text{eats}.\text{Meat} \)
Example: \(\mathcal{ALC}\)-concept descriptions

Signature: \(N_C = \{\text{Person, Male, Happy}\}\), \(N_r = \{\text{has-child, has-sibling, likes, knows}\}\)

Parent:
\[
\text{Person} \sqcap \exists \text{has-child}.\text{Person}
\]

Grandparent:
\[
\text{Person} \sqcap \exists \text{has-child}.(\exists \text{has-child}. \text{Person})
\]

Uncle of happy children:
\[
\text{Person} \sqcap \text{Male} \sqcap \exists \text{has-sibling}.(\exists \text{has-child}.\text{Person}) \\
\sqcap \forall \text{has-sibling}.(\forall \text{has-child}.\text{Happy})
\]
Semantics of named concepts

Semantics based on interpretation \(\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I}) \)

Concepts: Subsets of domain \(\Delta^\mathcal{I} \)

Roles: binary relations on domain \(\Delta^\mathcal{I} \)

Primitive concepts

\(\top^\mathcal{I} = \Delta^\mathcal{I} \)

\(\bot^\mathcal{I} = \emptyset \)

\(A^\mathcal{I} \subseteq \Delta^\mathcal{I} \)

Domain \(\Delta^\mathcal{I} \)
Semantics of complex concepts:

\[(\neg C)^\mathcal{I} = \Delta^\mathcal{I} \setminus C^\mathcal{I}\]

\[(C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}\]

\[(C \cup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I}\]

\[(\exists r. C)^\mathcal{I} = \{ d \in \Delta^\mathcal{I} \mid \exists e : e \in \Delta^\mathcal{I} \text{ with } (d, e) \in r^\mathcal{I} \text{ and } e \in C^\mathcal{I} \}\]

\[(\forall r. C)^\mathcal{I} = \{ d \in \Delta^\mathcal{I} \mid \forall e : e \in \Delta^\mathcal{I}, (d, e) \in r^\mathcal{I} \text{ implies } e \in C^\mathcal{I} \}\]
Reasoning tasks for concepts

model of C: interpretation \mathcal{I} with $C^\mathcal{I} \neq \emptyset$

1. **Concept satisfiability**

 C is satisfiable if there exists a model of C.

 If unsatisfiable, the concept contains a contradiction.

2. **Concept subsumption** written $C \sqsubseteq D$

 Does $C^\mathcal{I} \subseteq D^\mathcal{I}$ hold for all \mathcal{I}?

 If $C \sqsubseteq D$, then D is more general than C

3. **Concept equivalence** written $C \equiv D$

 Does $C^\mathcal{I} = D^\mathcal{I}$ hold for all \mathcal{I}?

 If $C \equiv D$, then D and C ‘say the same’.
Examples

• \forallowner.Rich $\sqcap \forall$owner.Famous $\sqsubseteq \forall$owner.(Rich \sqcap Famous)

• \existsowner.Rich $\sqcap \forall$owner.Famous $\not\sqsubseteq \exists$owner.(Rich \sqcap Famous)

• $C \sqsubseteq T$ for all C.

• $\bot \sqsubseteq C$ for all C.

• $C \sqsubseteq D$ if and only if $C \sqcap \neg D$ is not satisfiable

• C is satisfiable if not $C \sqsubseteq \bot$.

\[\Rightarrow \text{ Subsumption can be reduced to (un)satisfiability and vice versa.} \]
DL systems are more than a concept language

Knowledge base

TBox
Terminological background knowledge

ABox
Knowledge about Individuals

Terminology of the application (categories and relations)

Concept language

Reasoner
Kinds of **concept axioms:**

- **Primitive concept definition:** \(A \sqsubseteq D \quad A \in N_C \)
- **Concept definition:** \(A \equiv D \quad A \in N_C \)
- **General concept inclusion (GCI):** \(C \sqsubseteq D \)

\[
C \sqsubseteq D \quad \text{holds in an interpretation } \mathcal{I} \iff C^\mathcal{I} \subseteq D^\mathcal{I}
\]

- **General concept equivalence:** \(C \equiv D \)

\[
C \equiv D \quad \text{holds in an interpretation } \mathcal{I} \iff C^\mathcal{I} = D^\mathcal{I}
\]

TBox \(\mathcal{T} \): Finite set of concept axioms.

\(\mathcal{I} \) is a **model** of a TBox \(\mathcal{T} \) if \(C^\mathcal{I} \subseteq D^\mathcal{I} \) for all \(C \sqsubseteq D \in \mathcal{T} \).
Kinds of TBoxes

1. TBox \mathcal{T} is a **general TBox**, if
 - it is a finite set of concept axioms
 - cyclic definitions and GCIs are allowed
 \[
 \{ \text{WildAnimal} \equiv \text{Animal} \sqcap \neg \exists \text{owner}. \top, \\
 \text{Mammal} \sqcap \exists \text{bodypart. Hunch} \equiv \\
 \text{Camel} \sqcup \text{Dromedary} \}
 \]

2. TBox \mathcal{T} is an **unfoldable TBox**, if it has
 - only (primitive) concept definitions
 - concept names at most once on the left-hand side of definitions
 - no cyclic definitions, no GCIs
 \[
 \{ \text{Elephant} \equiv \text{Mammal} \sqcap \exists \text{bodypart. Trunk} \\
 \text{Mammal} \equiv \text{Elephant} \sqcup \text{Lion} \sqcup \text{Zebra} \}
 \]

Unfoldable TBoxes can be conceived as macro definitions.
Terminological Reasoning Services

Reasoning tasks for TBoxes:

1. **Concept satisfiability w.r.t. TBoxes**
 Given C and \mathcal{T}. Does there exist a common model of C and \mathcal{T}?

2. **Concept subsumption w.r.t. TBoxes** ($C \sqsubseteq_{\mathcal{T}} D$)
 Given C, D and \mathcal{T}. Does $C^\mathcal{T} \subseteq D^\mathcal{T}$ hold in all models of \mathcal{T}?

3. **Classification of the TBoxes**
 Computation of all subsumption relationships between all named concepts in \mathcal{T}.

\[\implies \text{Subsumption can be used to compute a concept hierarchy:} \]

\[\begin{array}{c}
 \top \\
 \uparrow \\
 \text{Pet} \\
 \downarrow \\
 \text{Dog} \\
 \swarrow \\
 \text{Cat} \\
 \searrow \\
 \text{Beagle}
\end{array} \]
Example for TBox reasoning

\[
\text{TBox}
\begin{align*}
\{ & \quad \text{Mammal} \sqsubseteq \text{Animal} & & \text{Salad} \sqsubseteq \text{Plant} \\
& \quad \text{Vegetarian} \equiv \text{Animal} \sqcap \forall \text{eats. Plant} \\
& \quad \text{Cat} \equiv \text{Mammal} \sqcap \exists \text{has-cover. Fur} \sqcap \forall \text{eats. Meat} \\
& \quad \text{VegetarianCat} \equiv \text{Cat} \sqcap \forall \text{eats. Plants} \\
& \quad \text{Meat} \sqcap \text{Plant} \sqsubseteq \bot \\
\}
\end{align*}
\]

1. TBox is satisfiable.
Example for TBox reasoning

\[
\text{TBox} \\
\{ \\
\quad \text{Mammal} \sqsubseteq \text{Animal} \quad \text{Salad} \sqsubseteq \text{Plant} \\
\quad \text{Vegetarian} \equiv \text{Animal} \sqcap \forall \text{eats}.\text{Plant} \\
\quad \text{Cat} \equiv \text{Mammal} \sqcap \exists \text{has-cover}.\text{Fur} \sqcap \forall \text{eats}.\text{Meat} \\
\quad \text{VegetarianCat} \equiv \text{Cat} \sqcap \forall \text{eats}.\text{Plants} \sqcap \exists \text{eats}.\text{Salad} \\
\quad \text{Meat} \sqcap \text{Plant} \sqsubseteq \perp \\
\}
\]

1. TBox is satisfiable.
2. VegetarianCat is unsatisfiable w.r.t. TBox.
Example for TBox reasoning

TBox

\{
\quad \text{Mammal} \sqsubseteq \text{Animal} \quad \text{Salad} \sqsubseteq \text{Plant} \\
\quad \text{Vegetarian} \equiv \text{Animal} \sqcap \forall \text{eats.Plant} \\
\quad \text{Cat} \equiv \text{Mammal} \sqcap \exists \text{has-cover.Fur} \sqcap \forall \text{eats.Meat} \\
\quad \text{VegetarianCat} \equiv \text{Cat} \sqcap \forall \text{eats.Plants} \sqcap \exists \text{eats.Salad} \\
\quad \text{Meat} \sqcap \text{Plant} \subset \text{Salad} \sqsubseteq \text{Meat} \\
\}

1. TBox is satisfiable.
2. VegetarianCat is unsatisfiable w.r.t. TBox.
3. VegetarianCat \sqsubseteq Vegetarian w.r.t. all of the TBoxes.
DL systems are more than a concept language

Knowledge base

TBox
Terminological background knowledge

ABox
Knowledge about Individuals

Concept language

Reasoner

Facts from the Application
ABoxes: syntax & semantics

ABox assertions in DL systems are:

- **Concept assertions**: $C(a)$
- **Role assertions**: $r(a, b)$

Extend interpretations to **individuals**:

$a \in N_I$, $a^\mathcal{I} \in \Delta^\mathcal{I}$

Semantics of assertions:

- **Concept Assertions**: \mathcal{I} satisfies $C(a) \iff a^\mathcal{I} \in C^\mathcal{I}$
- **Role Assertions**: \mathcal{I} satisfies $r(a, b) \iff (a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$

An **ABox** \mathcal{A} is a finite set of assertions.

\mathcal{I} is a **model** for an ABox \mathcal{A} if \mathcal{I} satisfies all assertions in \mathcal{A}.
ABox is a **partial** description of the world.

(Unlike models!)

ABox \mathcal{A}

- Mammal(garfield)
- Lasagna(l23)
- eats(garfield, l23)
- \foralleats.Beef(garfield)

- Fur(f17)
- has-cover(garfield, f17)
- likes-most(garfield, garfield)
Reasoning tasks for ABoxes:

1. **ABox consistency**
 Given: \mathcal{A} and \mathcal{T}. Do they have a common model?

2. **Instance checking**
 Given: \mathcal{A}, \mathcal{T}, individual a, and concept C
 Does $a^\mathcal{I} \in C^\mathcal{I}$ hold in all models of \mathcal{A} and \mathcal{T}?

3. **ABox realization**
 Given \mathcal{A} and \mathcal{T}.
 Compute for each individual a in \mathcal{A}:
 the named concepts in \mathcal{T} of which a is an instance of.
ABox is a partial description of the world.

ABox
Mammal(garfield) Fur(f17)
Lasagna(l23) has-cover(garfield, f17)
eats(garfield, l23) likes-most(garfield, garfield)
\forall eats.Beef(garfield)

TBox
Cat \equiv Mammal \sqcap \exists has-cover.Fur \sqcap \forall eats.Meat
Meat \equiv Beef \sqcup Chicken
Lasagna \sqcap Beef \sqsubseteq \bot

1. ABox is inconsistent w.r.t. TBox.
Example for ABox Reasoning

ABox is a partial description of the world.

\[
\begin{align*}
\text{ABox} & \quad \text{Mammal}(\text{garfield}) & \quad \text{Fur}(f17) \\
& \quad \text{Lasagna}(l23) & \quad \text{has-cover}(\text{garfield}, f17) \\
& \quad \text{eats}(\text{garfield}, l23) & \quad \text{likes-most}(\text{garfield}, \text{garfield}) \\
& \quad \forall \text{eats}.\text{Beef}(\text{garfield})
\end{align*}
\]

\[
\begin{align*}
\text{TBox} & \quad \text{Cat} \equiv \text{Mammal} \sqcap \exists \text{has-cover}.\text{Fur} \sqcap \forall \text{eats}.\text{Meat} \\
& \quad \text{Meat} \equiv \text{Beef} \sqcup \text{Chicken} \\
& \quad \text{Lasagna} \sqcap \text{Beef} \sqsubseteq \bot
\end{align*}
\]

1. ABox is inconsistent w.r.t. TBox.
2. garfield is an instance of Cat
Relation of DLs to other logics
Basic correspondence:

- concept names A \iff unary predicates P_A
- role names r \iff binary predicates P_r
- concepts \iff formulas with one free variable
- individuals \iff constants c_α
Translation of concept descriptions into First-order Logic

\[\varphi^x(A) = P_A(x) \]
\[\varphi^x(\neg C) = \neg \varphi^x(C) \]
\[\varphi^x(C \cap D) = \varphi^x(C) \land \varphi^x(D) \]
\[\varphi^x(C \cup D) = \varphi^x(C) \lor \varphi^x(D) \]
\[\varphi^x(\exists r.C) = \exists y. P_r(x, y) \land \varphi^y(C) \quad \varphi^y: x \text{ and } y \text{ exchanged} \]
\[\varphi^x(\forall r.C) = \forall y. P_r(x, y) \rightarrow \varphi^y(C) \]

Note: - two variables suffice (no "\(^=\)", no constants, no function symbols)
- not all DLs are purely first-order (transitive closure, etc.)
Translation of TBoxes and ABoxes into FOL

TBoxes:

Let \(C \) be a concept and \(T \) a (general or unfoldable) TBox.

\[
\varphi(T) = \forall x. \bigwedge_{D \subseteq E \in T} \varphi^x(D) \rightarrow \varphi^x(E)
\]

ABoxes:

individual names \(a \) \(\iff \) constants \(c_a \)

\[
\varphi(C(a)) = \varphi^x(C)[c_a]
\]

\[
\varphi(r(a, b)) = P_r(c_a, c_b)
\]

\[
\varphi(A) = \bigwedge_{\beta \in A} \varphi(\beta)
\]
Obvious translation:

- concept names \iff propositional variables
- role names \iff modal parameters
- concepts $\exists r.C$ \iff formulas $\Diamond \psi$
- concepts $\forall r.C$ \iff formulas $\Box \psi$

Notes:
- Interpretations can be viewed as Kripke structures
- \mathcal{ALC} is a notational variant of modal K_ω
- TBoxes related to universal modality: $\Box_u \bigwedge_{\mathcal{D}\sqsubseteq E \in \mathcal{T}} D \rightarrow E$
- ABoxes related to nominals / hybrid modal logic
DLs beyond \mathcal{ALC}
Beyond \mathcal{ALC}: concept constructors

Number restrictions \((\leq n r), (\geq n r)\)
\[
(\leq n r)^I = \{ x \in \Delta^I \mid \# \{ y \mid (x, y) \in r^I \} \leq n \}
\]
\[
(\geq n r)^I = \{ x \in \Delta^I \mid \# \{ y \mid (x, y) \in r^I \} \geq n \}
\]

Qualified number restrictions \((\leq n r C), (\geq n r C)\)
\[
(\leq n r C)^I = \{ x \in \Delta^I \mid \# \{ y \mid (x, y) \in r^I \wedge y \in C^I \} \leq n \}
\]
\[
(\geq n r C)^I = \{ x \in \Delta^I \mid \# \{ y \mid (x, y) \in r^I \wedge y \in C^I \} \geq n \}
\]

Example:
\[
\text{Car} \sqcap (\geq 5 \text{ has-seat}) \sqcap (\leq 5 \text{ has-seat})
\]
\[
\sqcap (\geq 1 \text{ has-seat Drivers-seat}) \sqcap (\leq 1 \text{ has-seat Drivers-seat})
\]
Beyond \(\mathcal{AC}C\): Concept constructors II

Sometimes it is useful to refer to individuals in the TBox.

Recall: If they have same description

- Concepts are **equivalent.**
 \[C \equiv (\forall \text{ has-child. } \bot) \quad D \equiv (\leq 0 \text{ has-child}) \quad \implies C \equiv D \]

- Individuals are **distinct.**

 - (Carla, Luisa): parent, Person(Carla),
 - (Markus, Luisa): parent, Person(Markus)

 \[\implies \text{ Carla } \neq \text{ Markus} \]

Concept constructors using individuals:

- **Nominals** \(\{a\} \)
 \[\{a\}^T = \{a^T\} \]

- **One-of** \(\{a_1, \ldots, a_n\} \)
 \[\{a_1, \ldots, a_n\}^T = \{a_1^T, \ldots, a_n^T\} \]

E.g.: RomanCatholic \(\subseteq \exists \text{ knows.}\{\text{Pope}\} \)
Role declarations

\(r \) atomic role \(r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I} \)

e.g. has-child

\(f \) feature or attribute
\[f^\mathcal{I} = \{(x, y) \mid (x, y) \in f^\mathcal{I} \land (x, z) \in f^\mathcal{I} \Rightarrow y = z\} \]

e.g. has-mother

\(r \sqsubseteq s \) role inclusion \(r \sqsubseteq s \) holds in \(\mathcal{I} \) \(\iff \) \(r^\mathcal{I} \subseteq s^\mathcal{I} \)

role hierarchy

e.g. has-mother \(\sqsubseteq \) has-parent

\(\sqsubseteq \) has-family-member

\(\sqsubseteq \) has-sibling
Role operators

\(r^+ \) transitive role \((r^+)^\mathcal{I} = \{ (x, z) \mid (x, y) \in r^\mathcal{I}, (y, z) \in r^\mathcal{I} \Rightarrow (x, z) \in r^\mathcal{I} \} \)

e.g. has-ancestor

\(r^- \) inverse role \((r^-)^\mathcal{I} = \{ (y, x) \mid (x, y) \in r^\mathcal{I} \} \)

e.g. \((\text{has-parent})^- = \text{has-child}\)
Names of description logics

Basis-DL: ALC

- \(E \): Existential restrictions
- \(N \): Number restrictions
- \(Q \): Qualified number restrictions
- \(O \): nominals, Objects

- \(F \): Features, functional roles
- \(+ \): Transitive roles
- \(I \): Inverse roles
- \(H \): role Hierarchies
- \(R \): complex Role inclusions

\(S \): Abbreviation for \(ALC^+ \)
OWL 1:

- W3C recommendation of 2004
- OWL DL and OWL Lite: DL-based ontology languages

OWL 2:

- W3C recommendation of 2009
- consists of
 - an expressive language: SROIQ
 - 2 profiles that correspond to light-weight DLs
The \mathcal{EL} family

Prominent members:

$\mathcal{EL} : \top, \exists, \sqcap$

\mathcal{EL}^+ extends \mathcal{EL} by: complex role inclusions: $r \circ s \sqsubseteq t$.

\mathcal{EL}^{++} extends \mathcal{EL}^+ by:

- \bot
- nominals
- corresponds to OWL 2 EL profile
- allows for efficient reasoning

Typically, used with general TBoxes!
• designed for ontology-based data access

• tailored towards applications that need to handle huge amounts of data

• allow efficient querying of ABoxes

• allow only for fairly light-weight TBoxes, but can express the basic constructs of ER or UML diagramms

⇒ required to store ABox in relational data base system and use relational DB engine for querying
Overview DL systems
Why automated reasoning?

TBox and the ABox capture implicit information. We want to access this information by making it explicit!

Does my knowledge base . . .

• contain a concept that cannot have instances? (since its definition is contradictory.)

• contain an unwanted synonym for a concept? (unwanted / unintended redundancy in my TBox)

• yield the concept hierarchy I wanted?

• contain individuals not compliant with the specification of the concepts they belong to?

Check for satisfiability w.r.t. TBox.

Check for equivalent concepts.

Classify.

Check ABox consistency.
Requirements for good reasoning algorithms:

They should be decision procedures, i.e. they should be:

- terminating,
- sound,
- complete.

You get *always* an answer.

Every positive answer is correct.

Every negative answer is correct.

➡️ Prerequisite for safe and reliable applications!
Reduction of inferences

Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

- Equivalence \iff Satisfiability
 \[C \equiv_{\mathcal{T}} D \iff C \sqsubseteq_{\mathcal{T}} D \text{ and } D \sqsubseteq_{\mathcal{T}} C \]

- Subsumption \iff Satisfiability
 \[C \sqsubseteq_{\mathcal{T}} D \iff C \sqcap \neg D \text{ unsatisfiable w.r.t. } \mathcal{T} \]
 \[C \not\sqsubseteq_{\mathcal{T}} \perp \text{ if } C \text{ is satisfiable w.r.t. } \mathcal{T} \text{ unsatisfiable w.r.t. } \mathcal{T} \]
Many standard reasoning services can be reduced to satisfiability.
(If negation is present in the DL!)

Use the reduction and implement one reasoning method!

- **Instance checking \(\iff\)** ABox consistency
 \(\alpha\) is instance of \(C\) w.r.t. \((\mathcal{T}, \mathcal{A})\) iff \((\mathcal{T}, \mathcal{A} \cup \{\neg C(\alpha)\})\) is inconsistent

- **Satisfiability \(\iff\)** ABox consistency
 \(C\) is satisfiable w.r.t. \(\mathcal{T}\) iff \((\mathcal{T}, \{C(\alpha)\})\) is consistent
Use the reduction

<table>
<thead>
<tr>
<th>Reformulate a...</th>
<th>as an ABox consistency check</th>
</tr>
</thead>
<tbody>
<tr>
<td>satisfiability test:</td>
<td>Consistent: $(\mathcal{T}, {C(a)})$?</td>
</tr>
<tr>
<td>$\text{sat}(C)$?</td>
<td>Inconsistent: $(\mathcal{T}, {C \sqcap \neg D(a)})$?</td>
</tr>
<tr>
<td>subsumption test:</td>
<td>Inconsistent: $(\mathcal{T}, \mathcal{A} \cup {\neg C(a)})$?</td>
</tr>
<tr>
<td>$C \sqsubseteq_\mathcal{T} D$</td>
<td></td>
</tr>
<tr>
<td>instance check:</td>
<td>Implement consistency test!</td>
</tr>
<tr>
<td>$\mathcal{T}, \mathcal{A} \models C(a)$?</td>
<td></td>
</tr>
</tbody>
</table>
Reasoning method for \mathcal{ALC}-KBs with unfoldable TBox

We consider: satisfiability of a concept w.r.t. a TBox.

Main steps:

1. Use the reduction to reformulate the reasoning problem

2. Expand concepts w.r.t. TBox

3. Normalize concept descriptions

4. Apply tableau rules
Expansion of concept descriptions

Idea: get rid of the unfoldable TBox in a preprocessing step.

Naive approach for expansion:

Let C be concept, T unfoldable TBox

1. replace every concept name of a defined concept with the right-hand side of its definitions $A \equiv C$

2. repeat until no more replacements can be made.
Expansion process terminates due to acyclicity of the concept definitions!

But: exponential blow-up in the worst case!

$$\mathcal{T} = \{ A_0 \equiv \forall r. A_1 \sqcap \forall s. A_1 \\
A_1 \equiv \forall r. A_2 \sqcap \forall s. A_2 \\
\vdots \\
A_{k-1} \equiv \forall r. A_k \sqcap \forall s. A_k \}$$
A concept \(C \) is in negation normal form (NNF) if negation occurs only in front of concept names.

Transformation rules:

\[
\begin{align*}
\neg\neg C & \iff C \\
\neg (C \cap D) & \iff \neg C \cup \neg D \\
\neg (C \cup D) & \iff \neg C \cap \neg D \\
\neg (\exists r. C) & \iff \forall r. \neg C \\
\neg (\forall r. C) & \iff \exists r. \neg C
\end{align*}
\]
Tableau Algorithm: Idea

Try to construct a model for the input concept C_0 as follows:
(C_0: expanded and in NNF)

- Represent potential models by proof ABoxes
- To decide satisfiability of C_0,
 start with one initial proof ABox A_0
- Repeatedly apply tableau rules
 and check for obvious contradictions
- Return ‘satisfiable’ iff a complete and contradiction-free proof ABox was found
 (i.e. if all proof ABoxes contain a contradiction, return ‘not satisfiable’)

Proof ABox

Tableau algorithm works on sets of ABoxes: \mathcal{S}

Initially, \mathcal{S} contains proof ABox for concept C_0:
$$\mathcal{S} := \{\mathcal{A}_0\}, \text{ with } \mathcal{A}_0 := \{C_0(x_0)\}$$

Apply tableau rules to set of proof ABoxes \mathcal{S} until

- a proof ABox is complete (no more rules applicable)
 or
- there exists an individual x in \mathcal{A} such that
 $$\{B(x), \neg B(x)\} \subseteq \mathcal{A} \text{ for some concept name } B$$ (Clash)
 or $\bot(x) \in \mathcal{A}$.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Precondition</th>
<th>Replace \mathcal{A} by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow \cap$</td>
<td>$(C_1 \cap C_2)(x) \in \mathcal{A}$ (\text{or} \ C_1(x) \not\in \mathcal{A} \text{ or } C_2(x) \not\in \mathcal{A})</td>
<td>$\mathcal{A}' := \mathcal{A} \cup {C_1(x), C_2(x)}$</td>
</tr>
<tr>
<td>$\rightarrow \cup$</td>
<td>$(C_1 \cup C_2)(x) \in \mathcal{A}$ (\text{and} \ C_1(x) \not\in \mathcal{A} \text{ and } C_2(x) \not\in \mathcal{A})</td>
<td>$\mathcal{A}' := \mathcal{A} \cup {(C_1)(x)}$ (\mathcal{A}'' := \mathcal{A} \cup {(C_2)(x)})</td>
</tr>
<tr>
<td>$\rightarrow \exists$</td>
<td>$(\exists r.C)(x) \in \mathcal{A}$, but no z in \mathcal{A} s.t. ({r(x, z), C(z)} \subseteq \mathcal{A})</td>
<td>$\mathcal{A}' := \mathcal{A} \cup {r(x, z), C(z)}$</td>
</tr>
<tr>
<td>$\rightarrow \forall$</td>
<td>$(\forall r.C)(x), r(x, y) \subseteq \mathcal{A}$, but $C(y) \not\in \mathcal{A}$</td>
<td>$\mathcal{A}' := \mathcal{A} \cup {C(y)}$</td>
</tr>
</tbody>
</table>
Lemma

1. If the algorithm returns “satisfiable”, then the input concept has a model.

2. If the algorithm returns “not satisfiable”, then the input concept has no model.

3. The algorithm terminates on any input

Corollary

\(\mathcal{ALC} \)-concept satisfiability and subsumption are decidable
Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let S' be obtained from S by the application of a tableau rule.
Then S is consistent iff S' is consistent.

Completeness of the procedure:
Directly follows from the definition of a clash.
Role depth of concepts $d(C)$:

\[d(A) = 0 \quad \text{for} \quad A \in N_C \]

\[d(\neg C) = d(C) \]

\[d(C \cap D) = d(C \cup D) = \max\{d(C), d(D)\} \]

\[d(\exists r.C) = d(\forall r.C) = d(C) + 1 \]

Maximal nesting of quantifiers in a concept description.
sub-concept descriptions of concepts $\text{sub}(C)$:

$C \in \text{sub}(C)$

$C = \neg D$, then $D \in \text{sub}(C)$

$C = C_1 \cap C_2$ or $C = C_1 \cup C_2$, then $C_1, C_2 \in \text{sub}(C)$

$C = \exists r . D$ or $C = \forall r . D$, then $D \in \text{sub}(C)$

sub-concept descriptions of ABoxes $\text{sub}(A)$:

\[
\text{sub}(A) := \bigcup_{C(a) \in A} \text{sub}(C)
\]
The algorithm terminates since:

1. depth of the proof ABox bounded by $d(C_0)$.
2. for each individual, at most $\#sub(C_0)$ successors are generated.
3. each individual has at most $\#sub(C_0)$ concept assertions.
4. concepts are never deleted from node labels.
Complexity for reasoning with unfoldable TBoxes

Complexity of unfolding: exponential

Complexity of transformation into NNF: linear

Complexity of application of tableau rules: polynomial space

$\mathcal{A}_0 \quad \mathcal{A}_1 \quad \ldots \quad \mathcal{A}_{\#\text{sub}(C_0)}$

- all ABoxes need to be considered, but only one at a time
- the whole tree may be generated, but only one path needs to be stored
Tableau algorithm for general TBoxes

- simple expansion does not work in the presence of GCIs:
 - replace a name by which part of the TBox?
 - cyclic axioms: termination?

- Applying the GCIs like rules does not work either!

\[\exists r.(C \cap \exists s.D) \subseteq \neg E \cup \exists r.D \]

‘Precondition’ may never appear at relevant element

- Recall: GCIs hold at every point in the model
 → new tableau rule for GCIs needed
Tableau algorithm for general TBoxes

Tableau rule for GCIps

1. Code all GCIps into one.

 For \(\mathcal{T} = \{ C_1 \subseteq D_1, C_2 \subseteq D_2, \ldots, C_n \subseteq D_n \} \)

 build the GCI \(\top \subseteq C_{GCI} \) with

 \[C_{GCI} \equiv (\neg C_1 \cup D_1) \cap (\neg C_2 \cup D_2) \cap \cdots \cap (\neg C_n \cup D_n) \]

2. Assert \(C_{GCI} \) for every individual: new tableau rule

 \[\rightarrow \top \subseteq C_{GCI} : \text{If } x \text{ in } \mathcal{A} \text{ and } C_{GCI}(x) \notin \mathcal{A}, \]

 then replace \(\mathcal{A} \) with \(\mathcal{A}' = \mathcal{A} \cup \{ C_{GCI}(x) \} \)
Problem: termination

Consider: \(\mathcal{T} = \{ B \subseteq \exists r. B \} \)

with \(C_{GCI} = \neg B \cup \exists r. B \)

\[\begin{aligned}
\mathcal{x}_0 & \quad B, \neg B \cup \exists r. B \\
& \quad \exists r. B \\
\mathcal{x}_1 & \quad B, \neg B \cup \exists r. B \\
& \quad \exists r. B \\
\mathcal{x}_2 & \quad B, \neg B \cup \exists r. B \\
& \quad \exists r. B \\
\vdots & \\
\text{Remedy:} & \quad \text{Block of application of } \rightarrow \exists
\end{aligned} \]
An individual \(x \) is **directly blocked** by an individual \(y \), iff:

- there is a path from \(y \) to \(x \) in \(A \)
- \(x \) was generated by \(\rightarrow \exists \) after \(y \)
 ‘\(y \) is older than \(x \).’
- \(\{ C \mid C(x) \in A \} \subseteq \{ D \mid D(y) \in A \} \)

An individual \(x \) is **indirectly blocked** if:

- there is a path from \(y \) to \(x \) in \(A \)
- \(y \) is directly blocked

An individual \(x \) is **blocked** if it is blocked or indirectly blocked.
Replace the exists rule \rightarrow_{\exists} by a exists rule with blocking $\rightarrow_{\exists\Box}$:

<table>
<thead>
<tr>
<th>Precondition</th>
<th>Replace \mathcal{A} by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow_{\exists\Box}$ $(\exists r.C)(x) \in \mathcal{A}$, and x is not (indirectly) blocked but no z in \mathcal{A} s.t. ${r(x, z), C(z)} \subseteq \mathcal{A}$</td>
<td>$\mathcal{A}' := \mathcal{A} \cup {r(x, z), C(z)}$</td>
</tr>
</tbody>
</table>
Adaptations to blocking

Have we obtained a model?

Some role-successors are missing in the ‘blocked’ ABox!

Build model w.r.t. blocking:

How to obtain a model for:
\[T = \{ B \sqsubseteq \exists r. B \} ? \]

Introduce ‘back links’.

\[x_0 \bullet B, \neg B \sqcup \exists r. B \]
\[\exists r. B \]
\[x_1 \bullet B, \neg B \sqcup \exists r. B \]
\[\exists r. B \]
Soundness of the procedure:
is shown by local correctness of each tableau rule.

Local correctness:
Let \(S' \) be obtained from \(S \) by the application of a tableau rule.
Then \(S \) is consistent iff \(S' \) is consistent.

Completeness of the procedure:
Directly follows from the definition of a clash.
The algorithm terminates since:

1. depth of the proof ABox bounded:
 - #individuals in A: finite
 - #‘new’ individuals directly reachable from an ‘old individual’: finite
 - #‘new’ individuals reachable from a ‘new individual’: finite
 (bound by blocking condition)

2. each individual has at most $\#_{sub}(C_{GCI}) + \#_{sub}(A)$ successors

3. each individual has at most $\#_{sub}(C_{GCI}) + \#_{sub}(A)$ concept assertions

4. concepts are never deleted from node labels
The tableaux algorithm

- is implemented in reasoner systems for expressive DLs
 — in particular in the reasoner for OWL 2

- requires optimizations to yield systems
 with acceptable running times
 — more on this in Uli’s course!
Basic model theory — for \mathcal{ALC}

Interpretations of \mathcal{ALC} can be viewed as graphs (with labeled edges and nodes).
Tree-shaped models (for \mathcal{ALC})

\mathcal{I}

\mathcal{I}

\mathcal{I}

\mathcal{I}

\mathcal{I}

\mathcal{I}

model of:

$A \subseteq \exists r. B$

$B \subseteq \exists r. A$

$A \cup B \subseteq \exists s. \top$

Starting with a given node, the graph can be unraveled into a tree without ‘changing membership’ in concepts.
Let \mathcal{T} be a TBox and C a concept description. The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} if

- \mathcal{I} is a model of \mathcal{T} and
- the graph $(\Delta^\mathcal{I}, \bigcup_{r \in N_R} r^\mathcal{I})$ is a tree whose root belongs to $C^\mathcal{I}$.

Theorem:

\textit{ALC} has the tree model property.

i.e., if \mathcal{T}: \textit{ALC}-TBox and C: \textit{ALC}-concept description such that C is satisfiable w.r.t. \mathcal{T}, then C has a tree model w.r.t. \mathcal{T}.
Theorem:

\textbf{ALCO} does not have the tree model property.

Proof:

The concept \{a\} does not have a tree model w.r.t. \{\{a\} \sqsubseteq \exists r.\{a\}\}.
Finite model property of \mathcal{ALC}

Let \mathcal{T} be a TBox and \mathcal{C} a concept description.

The interpretation \mathcal{I} is a finite model of \mathcal{C} w.r.t. \mathcal{T} iff

- \mathcal{I} is a model of \mathcal{T} and
- $\mathcal{C}_\mathcal{I} \neq \emptyset$, and $\Delta^\mathcal{I}$ is finite.

Theorem:

\mathcal{ALC} has the finite model property.

i.e., if \mathcal{T}: \mathcal{ALC}-TBox and \mathcal{C}: \mathcal{ALC}-concept description such that
\mathcal{C} is satisfiable w.r.t. \mathcal{T}, then \mathcal{C} has a finite model w.r.t. \mathcal{T}.
How to compare the expressivity of DLs?

How can we show that a concept constructor really extends \textit{ALC}?

- Take a concept description C that uses the new constructor
- Show that C cannot be expressed by any \textit{ALC}-concept description.

\textit{ALC}-concept descriptions are exactly those that cannot distinguish between bisimular models.
Bisimulation between interpretations

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations.

The relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 iff

1. $d_1 \rho d_2$ implies $d_1 \in A^{\mathcal{I}_1}$ iff $d_2 \in A^{\mathcal{I}_2}$ for all $A \in N_C$

2. $d_1 \rho d_2$ and $(d_1, d'_1) \in r^{\mathcal{I}_1}$ implies the existence of $d'_2 \in \Delta^{\mathcal{I}_2}$ s.t.
 $d'_1 \rho d'_2$ and $(d_2, d'_2) \in r^{\mathcal{I}_2}$ for all $r \in N_R$

3. $d_1 \rho d_2$ and $(d_2, d'_2) \in r^{\mathcal{I}_2}$ implies the existence of $d'_1 \in \Delta^{\mathcal{I}_1}$ s.t.
 $d'_1 \rho d'_2$ and $(d_1, d'_1) \in r^{\mathcal{I}_1}$ for all $r \in N_R$
Let I_1 and I_2 be interpretations and $d_1 \in \Delta^{I_1}$ and $d_2 \in \Delta^{I_2}$.

$$(I_1, d_1) \sim (I_2, d_2) \text{ iff there is a bisimulation } \rho \text{ between } I_1 \text{ and } I_2$$

such that $d_1 \rho d_2$

Theorem: (bisimulation invariance of ALC)

If $(I_1, d_1) \sim (I_2, d_2)$, then the following holds for all ALC-concepts C:

$$d_1 \in C^{I_1} \text{ iff } d_2 \in C^{I_2}$$

‘ALC-concepts cannot distinguish between d_1 and d_2.’
Expressiveness: \mathcal{ALC} vs. \mathcal{ALCN}

Theorem: \mathcal{ALCN} is more expressive than \mathcal{ALC}.

Pick: $C \equiv (\leq 1 \, r)$

Now, $\rho = \{(d_1, d_2), (e_{11}, e_2), (e_{12}, e_2)\}$ is a bisimulation, but $d_2 \in (\leq 1 \, r)^{I_2}$ and $d_1 \not\in (\leq 1 \, r)^{I_1}$.
Expressiveness: ALCI vs. ALC

Theorem: ALCI is more expressive than ALC.

Pick: $C \equiv (\exists r^- . T)$

Now, $\rho = \{(d_1, d_2)\}$ is a bisimulation, but $d_2 \in (\exists r^- . T)^{\mathcal{I}_2}$ and $d_1 \notin (\exists r^- . T)^{\mathcal{I}_1}$
In this course we

- covered the origin and development of DLs as a research field
- introduced the ‘ingredients’ of DL knowledge bases
- defined the basic DL reasoning tasks
- introduced OWL 2 (& profiles)
- discussed the tableaux method for \mathcal{ALC}
- showed properties for \mathcal{ALC} models
- saw how to compare expressiveness of DLs
...to up-coming sensations!

In the next courses Uli & Misha will show

- how high the complexity of reasoning is!
- how OWL reasoners can be optimized!
 (Can be made run faster.)